簡易檢索 / 詳目顯示

研究生: 林耕民
論文名稱: 無母數貝氏分析在探討教學成效的廣義線性混合模型之應用
指導教授: 蔡蓉青
學位類別: 碩士
Master
系所名稱: 數學系
Department of Mathematics
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 69
中文關鍵詞: 無母數貝氏分析廣義線性混合模式混合模型
英文關鍵詞: Nonparametric Bayesian, Generalized linear mixed model, Mixture model, Dirichlet Process prior
論文種類: 學術論文
相關次數: 點閱:161下載:18
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在這需要學習知識的時代,建構一套有效的教學法是必要的,在衡量教學法產生的改變效益時,在早期通常是直接採用前後測總分的差異來評斷學生的改變狀況,而試題反應理論模型則考慮測量會有誤差,所以利用學生在前後測試題所量測的潛在能力上之改變來衡量教學成效。不管是Rasch模型或是延伸之後的廣義線性混合模式都已被廣泛使用於此,但這些模型常用的估計法要不是假設能力為常態之隨機變數,就是犧牲次要訊息去提高參數準確度。
    此篇論文使用無母數貝氏分析中的Dirichlet Process(DP)先驗分配模型來考慮能力改變,目的即是將混合模型中對隨機效應的限制放鬆,允許隨機效應分布為無母數且具有分群效果。本研究經由模擬觀察到此模型相較於penalized quasi-likelihood(PQL)和條件最大概似法在隨機效應的估計上具有優勢,也發現當隨機效應維度變高時,甚至在固定效應估計上也較PQL 更為精確;另外在考慮如何選擇先驗分配方面,模擬結果建議可以藉由對於同樣是DP先驗分配概念下的兩個相似模型進行比對來挑選先驗分配。最後,我們利用DP先驗分配模型來探討及解釋實際資料中,不同教學法對學生的教學成效。

    第一章緒論………………………………………………………………………6 第二章模型與參數假設…………………………………………………………10 第一節LLTM模型……………………………………………………………10 第二節GLMM模型……………………………………………………………11 第三節Dirichlet Process(DP) ………………………………………12 第四節考慮DP下的GLMM……………………………………………………14 第三章參數之先驗分配與條件後驗分配………………………………………15 第一節先驗分配假設………………………………………………………15 第二節條件後驗分配………………………………………………………16 第三節固定和隨機效應估計與預測………………………………………20 第四節模型比較方式………………………………………………………21 第四章模擬研究…………………………………………………………………23 第一節模擬一………………………………………………………………23 第二節模擬二………………………………………………………………43 第五章應用分析…………………………………………………………………49 第六章討論與建議………………………………………………………………61 第七章結論………………………………………………………………………63 參考文獻…………………………………………………………………………64

    Andersen, E. B. (1970). Asymptotic properties of conditional maximum likelihood estimators. Journal of the Royal Statistical Society, Series B, 32, 283-301

    Andersen, E. B. (1973). Conditional inference and models for measuring. Copenhagen: Mentalhygiejnisk Forlag.

    Andersen, E. B. & Madsen, M. (1977). Estimating the parameters of the latent population distriution. Psychometrika, 42, 357-374.

    Ansari, A. & Iyengar, R. (2006). Semiparametric Thurstonian models for recurrent choices: A Bayesian analysis. Psychometrika, 71, 631-657.

    Blackwell, D. & James, B. MacQueen. (1973). Ferguson distribution via Polya urn schemes. The Annals of Statistics, 1, 353-355.

    Blackwell, D. (1973). Discreteness of Ferguson selections. the Annals of Statistics, 1, 356-358.

    Bock, R. D. & Aitkin, M. (1981). Marginal maximum likelihood estimation of item parameters: An application of an EM algorithm. Psychometrika, 46, 443-459.

    Box, G.E.P. (1980). Sampling and Bayes’inference in scientific modelling and robustness (C/R: p404-430), Journal of the Royal Statistical Society, Series A, 143, 383-430.

    Breslow, N.E. & Clayton, D.G. (1993). Approximate Inference in Generalized Linear Mixed Models. Journal of the American Statistical Association, 88, 9-25.

    Duncan, K. A. & MacEachern, S. N. (2008). Nonparametric Bayesian modeling for item response. Statistical Modeling, 8, 41-66.

    Escobar, M. D. (1994). Estimating normal means with a Dirichlet process prior. Journal of the American Statistical Association, 89, 268-277.

    Escobar, M. D. & West, M. (1995). Bayesian density estimation and inference using mixtures. Journal of the American Statistical Association, 90, 577-588.

    Escobar, M. D. & West, M. (1998). Computing Bayesian nonparametric hierarchical models. In D. Dey, P. Muller, & D. Sinha (Eds.), Practical Nonparametric and Semiparametric Bayesian Statistics (pp. 1-22). Berlin: Springer-Verlag.

    Fischer, G. H. (1973). The linear logistic test model as an instrument in educational research. Acta Psychologica, 37, 359-374.

    Fischer, G. H. (1977). Linear Logistic Trait Models: Theory and Application. In H Spada, WF Kempf (eds.), Structural Models of Thinking and Learning (pp. 203-225). Bern: Huber.

    Fischer, G. H. (1981). On the existence and uniqueness of maximum-likelihood estimates in the Rasch model. Psychometrika, 46, 59-77.

    Fischer, G. H. (1983). Logistic latent trait models with linear constraints. Psychometrika, 48, 3-26.

    Fischer, G. H. (1995). Linear logistic models for change. In G. H. Fischer & I. W. Molenaar (Eds.), Rasch models. Foundations, recent developments, and applications (pp. 157-180). New York: Springer.

    Fischer, G. H. & Formann, A. K. (1982). Some applications of logistic latent trait models with linear constraints on the parameters. Applied Psychological Measurement, 6, 397-416.

    Fischer, G. H. & Molenaar, I. W. (1995). Rasch Models Foundations, Recent Developments, and Applications. New York: Springer.

    Florens, J.-P., Mouchart, M. & Rolin, J.-M. (1992). Bayesian analysis of mixtures: Some results on exact estimability and identification. In: Bernardo, J.M., Berger, J.O., S.A.F.M. (Eds.), Proceedings of the Fourth Valencia International Meeting (pp. 127-145.) Clarendon Press, Oxford.

    Gamerman, D. (1997). Sampling from the posterior distribution in generalized linear mixed models. Statistics and Computing, 7, 57-68.

    Gelfand, A. E. & Dey, D. (1994). Bayesian model choice:asymptotics and exact calculations. Journal of Royal Statistical Society, Series B, 56, 501-514.

    Gelfand, A. E. & S. Mukhopadhyay. (1995). On Nonparametric Bayesian Inference for the Distribution of a Random Sample. Canadian Journal of Statistics, 23, 411-420.

    Geisser, S. & Eddy, W. (1979). A predictive approach to mdoel selection. Journal of the American Statistical Association, 74, 153-160.

    Hastings, W.K.(1970). Monte Carlo sampling methods using Markov chains and their applications. Biometrika, 57, 97-109.

    Jara, A., Garc´ia-Zattera, M. J. & Lesaffre, E. (2007). A Dirichlet process mixture model for the analysis of correlated binary responses. Journal Computational Statistics and Data Analysis 51, 5402-5415.

    Jara, A., Hanson, T. E., Quintana, F., Mu¨ller, P. & Rosner, G. L. (2009). DPpackage: Bayesian Non- and Semi-parametric Modelling in R.(still under Review)

    Kleinman, K. P. & Ibrahim, J. G. (1998). A semiparametric Bayesian approach to the random effects model. Biometrika, 54, 921-938.

    Kom´arek, A. & Lesaffrea, E. (2008). Generalized linear mixed model with a penalized Gaussian mixture as a random effects distribution. Computational Statistics and Data Analysis, 52, 3441-3458.

    Kubinger, K. D. (2009). Applications of the Linear Logistic Test Model in Psychometric Research. Educational and Psychological Measurement, 69, 232-244.

    Liti`ere, S., Alonso, A. & Molenberghs, G. (2008). The impact of a misspecified randomeffects distribution on the estimation and the performance of inferential procedures in generalized linear mixed models. Statistics in Medicine, 27, 3125-3144 .

    MacEachern, S. N. (1998). Computational methods for mixture of Dirichlet process models. In D. Dey, P. M¨uller, & D. Sinha (Eds.), Practical Nonparametric and Semiparametric Bayesian Statistics (pp. 23-43). Berlin: Springer-Verlag.

    MacEachern, S. N. & M¨uller, P. (1998). Estimating mixture of Dirichlet Process Models. Journal of Computational and Graphical Statistics, 7, 223-338.

    MacEachern, S. N. & M¨uller, P. (2000). Efficient MCMC schemes for robust model extensions using encompassing Dirichlet process mixture models. In D. Rios Insua & F. Ruggeri (Eds.), Robust Bayesian analysis (pp. 295-315). Berlin: Springer.

    McCullagh, P. & Nelder, J. A. (1989). Generalized Linear Models. Chapman & Hall/CRC.

    Meiser, T. (2007). Rasch Models for Longitudinal Data. In M. von Davier & C. H. Carstensen (Eds.), Multivariate and Mixture Distribution Rasch Models: Extensions and Applications (pp. 191-199). New York: Springer-Verlag.

    Meiser, T., Hein-Eggers, M., Rompe, P. & Rudinger, G. (1995). Analyzing homogeneity and heterogeneity of change using Rasch and latent class models: A comparative and integrative approach. Applied Psychological Measurement, 19, 377-391.

    Meiser, T. & Rudinger, G. (1997). Modeling stability and regularity of change: Latent structure analysis of longitudinal discrete data. In J. Rost & R. Langeheine (Eds.), Applications of Latent Trait and Latent Class Models in the Social Sciences (pp. 389- 397). M¨unster: Waxmann.

    Meiser, T., Stern, E. & Langeheline, R. (1998). Latent change in discrete data: unidimensional, multidimensional, and mixture distribution Rasch Models for the analysis of repeated observations. Methods of Psychological Research Online, 3, 75-93.

    Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H. & Teller, E. (1953). Equations of state calculations by fast computational machine. Journal of Chemical Physics, 21, 1087-1091.

    Miyazaki, K., Hoshino, T. (2009). A Bayesian semiparametric Item Response Model with Dirichlet Process Priors. Psychometrika, 74, 375-393.

    Neal, R. M. (2000). Markov Chain sampling methods for Dirichlet process mixture models. Journal of Computational and Graphical Statistics, 9, 249-265.

    Pinheiro, J. C. & Chao, E. C. (2006). Efficient Laplacian and adaptive Gaussian quadrature algorithms for multilevel generalized linear mixed models. Journal of Computational and Graphical Statistics, 15, 58-81.

    Pfanzagl, J. (1994). On item parameter estimation in certain latent trait models. In G. H. Fischer & D. Laming (Eds.), Contributions to mathematical psychology, psychometrics and methodology (pp. 249-263). New York: Springer.

    McCullagh, P. & Nelder, J. A. (1989). Generalized Linear Models, Second Edition. Chapman and Hall, London.

    Raudenbush, S. W., Yang, M. & Yosef, M. (2000) Maximum likelihood for generalized linear models with nested random effects via high-order, multivariate Laplace approximation. Journal of Computational and Graphical Statistics, 9, 141-157

    Rost, J. (1990). Rasch models in latent classes: an integration of two approaches to item analysis. Applied Psychological Measurement, 3, 271-282.

    San Martin, E., Jara, A., Rolin, J.-M. & M. Mouchart. (2008) On the Analysis of Bayesian Semiparametric IRT-type Models Technical report, Pontica Universidad Cat´olica de Chile, Department of Statistics.

    Sethuraman, J. (1994). A constructive definition of Dirichlet prior. Statistica Sinica, 2, 639-650.

    Smith A. F. M. & Spiegelhalter, D. J. (1980). Bayes factors and choice criteria for linear models. Journal of the Royal Statistical Society, Series B, 42, 213-220.

    Spiegelhalter, D. J. & Smith A. F. M. (1982). Bayes factors for linear and log-linear models with vague prior information. Journal of the Royal Statistical Society, Series B, 44, 377-387.

    下載圖示
    QR CODE