研究生: |
曾盈嘉 Zeng, Ying-Jai |
---|---|
論文名稱: |
學生分類學概念訊息處理模式及對分類學發展的看法與解釋 University Students’ Information Processing Patterns on the Concepts of Taxonomy and Their Explanations about the Development of Taxonomy |
指導教授: |
楊芳瑩
Yang, Fang-Ying |
學位類別: |
碩士 Master |
系所名稱: |
科學教育研究所 Graduate Institute of Science Education |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 中文 |
論文頁數: | 107 |
中文關鍵詞: | 科學閱讀 、先備知識 、科學解釋 、眼球追蹤 、閱讀歷程 |
英文關鍵詞: | scientific reading, prior knowledge, scientific explanation, eye tracking, reading process |
DOI URL: | http://doi.org/10.6345/THE.NTNU.GSE.002.2019.F02 |
論文種類: | 學術論文 |
相關次數: | 點閱:286 下載:10 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究欲探討不同學習成就之非生物相關科系大學生,在閱讀高中基礎生物課文時,對於基礎生物課文內容的整體注意力分配;且欲了解不同先備知識之非生物相關科系大學生,在閱讀科普演化樹文本時,對於演化樹文本之內容的整體注意力分配。同時探討非生物相關科系大學生在閱讀科普演化樹文本後,所提出之科學解釋類型及表現,與其閱讀演化樹文本時的歷程及先備知識是否相關。
受試者為32位非生物相關科系且高中非三類組之大學以上在學生,實驗流程為讓受試者閱讀基礎生物課文之演化證據文本,並填寫學習成就測驗卷,再依據學習成就測驗卷之成績將受試者分為高、中、低分三組,並進行三組眼動結果比較。後測結束後讓受試者閱讀科普「鳥類最新演化樹」文本,依先前之學習成就結果作為先備知識高低的依據,並比較三組受試者在眼動歷程上的差異。受試者閱讀鳥類最新演化樹文本後會進行簡短的分類學看法訪談,並針對其提出之科學解釋進行分類及評分,進行科學解釋類型、科學解釋表現與先備知識及眼動指標之相關分析。
結果發現,學習成就較高的高分組於閱讀圖片上分配較多的注意力,而中分組傾向從文字中得到訊息。低分組於組織文章架構碰到困難,因而在副標題區有較多注意力分配。圖文交互閱讀次數則是高分組、中分組皆高於低分組。在演化樹文本的閱讀歷程中,先備知識較高者比起先備知識較低者分配較少的注意力及認知資源即能理解文本,而比起先備知識較不足的低分組,中分組能夠判斷有許多關鍵內容的內文一需仔細閱讀。而在科學解釋的相關分析中,結果表明科學解釋類型與先備知識無關,但科學解釋表現分數與先備知識呈顯著中低度正相關。在閱讀歷程上,科學解釋表現和文章標題、內文一、內文二、圖說一、圖說二及舊演化樹物種名稱的眼動指標呈正相關。而科學解釋表現與內文一的區域閱讀時間百分比呈接近顯著的負低相關,顯示讀者於內文一分配較多注意力是因為碰到閱讀困難。
The main purpose of this study was to explore the the effect of prior knowledge in the reading of a popular science article on the topic of evolutionary tree by non-biological related college students using the eye tracking method.. At the same time, we analyzed whether the types and performances of scientific explanations proposed by the non-biological related college students after reading evolutionary tree text were associated with the prior knowledge and reading process of the evolutionary tree text.
The participants were 32 non-biological major college students. The study procedure is described as follows. First, participants took the pre-test designed to assess the understanding about Taxonomy, and than proceeded to read the text about evolutionary evidence abstracted from the high-school biology textbook. During the reading, students’ eye movements were recorded. After that, subjects took the post-test. Based on the post-test result, students were divided into high, medium and low achievement groups. After the post test, the participants were asked to read a short article on the topic of evolutionary tree which was abstracted from Scientific American while their eye movements were also recorded. Using the learning achievements as the indicators for students’ prior knowledge, we compared the differences in the eye movement patterns of the three achievement groups. In addition, after reading evolutionary tree text, subjects were interviewed to states their views about the Taxonomy. Their responses were than analyzed to probe the types of scientific explanation and the performance of scientific explanation. At last, the relationships between prior knowledge, visual attention distributions and performance of scientific explanations were analyzed by statistical methods.
The results showed that students with high prior knowledge distributed more visual attention to the picture of evolutionary tree, while the medium group tended to learn from the text. The group of low prior knowledge seemed to have difficulty in organizing the article structure, so they pay more attention in the subtitle area. Furthermore, group of low prior knowledge displayed the least count of inter-scanning between text and picture. For the reading of the popular science text on the topic of the evolutionary tree, it was found that those with high prior knowledge used the less attention and cognitive resources than did the low prior knowledge group. Compared with low prior knowledge group, the medium group seemed to distinguish better the key information.
By the correlation analysis it was found that the performance of scientific explanations and prior knowledge was positively correlated. No correlation was found between the types of scientific explanation and prior knowledge. For the reading of popular science text, positive correlations were found between the performance of scientific explanation and the reading of the title of the article, the text 1, the text 2, the picture 1, the picture 2 and the species names in the old evolution tree.
英文部分
Adler, C. (1994). Directed picture processing: The effects for learners on recall of related text.
Alexander, P. A., & Kulikowich, J. M. (1994). Learning from physics text: A synthesis of recent research. Journal of Research in Science Teaching, 31(9), 895-911.
Armbruster, B. B. (1988). Why some children have trouble reading content area textbooks. Center for the Study of Reading Technical Report; no. 432.
Avraamidou, L. & Osborne, J. (2009) . The role of narrative in communicating science. International Journal of Science Education, 31 (12), 1683-1707.
Berland, L. K., & Reiser, B. J. (2008). Making sense of argumentation and explanation. Science Education, 93, 1-30.
Brewer, W. F., Chinn, C. A., & Samarapungavan, A. (2000). Explanation in scientists and children. In F. C. Keil & R. A. Wilson (Eds.), Explanation and Cognition (pp. 279-298). Cambridge, MA: MIT Press.
Carney, R. N., & Levin, J. R. (2002). Pictorial illustrations still improve students' learning from text. Educational psychology review, 14(1), 5-26.
Chin, C., & Brown, D.E. (2000). Learning in science: A comparison of deep and surface approaches. Journal of Research in Science Teaching, 37, 109–138.
Cook, M., Wiebe, E. N., & Carter, G. (2008). The influence of prior knowledge on viewing and interpreting graphics with macroscopic and molecular representations. Science Education, 92(5), 848-867.
Dochy, F. J. R. C. (1994). Prior knowledge and learning. In T. Husen & T. N. Postlethwaite (Eds.), International encyclopedia of education (2nd). (pp.4698-4702). New York: Pergamon.
Dochy, F. J., Valcke, M. M., & Wagemans, L. J. (1991). Learning economics in higher education: an investigation concerning the quality and impact of expertise. Higher Education in Europe, 16(4), 123-136.
Driver, R., Leach, J., Millar, R., & Scott, P. (1996). Young people’s images of science (Buckingham, Open University Press).
Driver, R., Newton, P., & Osborne, J. (2000). Establishing the norms of scientific argumentation in classrooms. Science Education, 84, 287–312.
Eitel, A., Scheiter, K., & Schüler, A. (2013). How inspecting a picture affects processing of text in multimedia learning. Applied Cognitive Psychology, 27(4), 451-461.
Glaser, R., & De Corte, E. (1992). Preface to assessment of prior knowledge as a determinant for future learning In FJRC Dochy. Assessment of prior knowledge as a determinant for future learning, 1.
Halliday, M. A. K. (1991). On the language of physical science. In M. Ghadessy (Ed), Registers of written English: Situational factors and linguistic features. London: Pinter.
Hannus, M., & Hyönä, J. (1999). Utilization of illustrations during learning of science textbook passages among low- and high-ability children. Contemporary Educational Psychology, 24, 95-123.
Hegarty, M. (1992). Mental animation: Inferring motion from static displays of mechanical systems. Journal of Experimental Psychology: Learning, Memory, and Cognition, 18, 1084-1102.
Hegarty, M., & Just, M. A. (1993). Constructing mental models of machines from text and diagrams. Journal of Memory and Language, 32, 717-742.
Ho, H. N. J., Tsai, M. J., Wang, C. Y., & Tsai, C. C. (2014). Prior knowledge and online inquiry-based science reading: Evidence from eye tracking. International Journal of Science and Mathematics Education, 12(3), 525-554.
Holsanova, J., Holmberg, N., & Holmqvist, K. (2009). Reading information graphics: The role of spatial contiguity and dual attentional guidance. Applied Cognitive Psychology, 23, 1215-1226.
Horwood, R. H. (1988). Explanation and description in science teaching. Science education, 72(1), 41-49.
Hyona, J., Lorch, R. F., Jr., & Kaakinen, J. K. (2002). Individual differences in reading to summarize expository text: evidence from eye fixation patterns. Journal of Educational Psychology, 94(1), 44-55.
Jonassen, D.H., & Grabowski, B.L. (1993). Handbook of individual differences, learning, and instruction. Part VII, Prior knowledge. Hillsdale: Lawrence Erlbaum Associates.
Just, M. A., & Carpenter, P. (1980). A theory of reading: From eye fixation to comprehension. Psychological Review, 87, 329-354.
Just, M. A., & Carpenter, P. A. (1976). Eye fixations and cognitive processes. Cognitive psychology, 8(4), 441-480.
Just, M. A., & Carpenter, P. A. (1976). The role of eye-fixation research in cognitive psychology. Behavior Research Methods, Instruments and Computers, 8, 139-143.
Kaplan, Z., & Erden, M. (2008). Instructional efficiency of integrated and separated text with animated presentations in computer-based science instruction. Computers & Education, 51, 660–668.
Karatekin, C. (2007). Eye tracking studies of normative and atypical development. Developmental review, 27(3), 283-348.
Lacey, A. R. (1996). A dictionary of philosophy-3rd edn. New York: Routledge.
Land, M. F. (2007). Fixation strategies during active behaviour: A brief history. In Eye Movements (pp. 75-95).
Land, M. F., Mennie, N., & Rusted, J. (1999). The roles of vision and eye movements in the control of activeties of daily living. Perception, 28, 1311-1328
Levin, J. R. (1982). Picture as prose-learning devices. In A. Flemmer & W. Kintsch (Eds.), Discourse processing. (p.412-444) New York: North Holland.
Levin, J. R. (1987). On empirically validating functions of pictures in prose. The psychology of illustration, 1, 51-86.
Levin, J. R., & Mayer, R. E. (1993). Understanding illustrations in text. Learning from textbooks: Theory and practice, 95-113.
Mallow, J. V. (1991). Reading science. Journal of Reading, 34(5), 324-338.
Martins, I. (2002). Visual imagery in school science texts. In J. Otero, J. A. Leon, & A. C. Graesser (Eds.), The Psychology of Science text comprehension (pp. 73-90). Mahwah, NJ: Lawrence Erlbaum Associates.
Mason, L., Tornatora, M. C., & Pluchino, P. (2013). Do fourth graders integrate text and picture in processing and learning from an illustrated science text? Evidence from eye-movement patterns. Computers & Education, 60(1), 95-109.
Mayer, R. E. (2001). Multimedia learning. Cambridge, UK: Cambridge University Press.
Mayer, R. E., & Moreno, R. (2002). Animation as an aid to multimedia learning. Educational psychology review, 14(1), 87-99.
McKeown, M. G., Beck, I. L., Sinatra, G. M. & Loxterman, J. A. (1992). The contribution of prior knowledge and coherent text to comprehension. Reading Research Quarterly,27(1), 79-93.
Mcneill, K. L. (2009). Teachers' use of curriculum to support students in writing scientific arguments to explain phenomena. Science Education, 93(2), 233-268.
McNeill, K. L., & Krajcik, J. (2007). Middle school students’ use ofappropriate and inappropriate evidence in writing scientific explanations. In Lovett, M. & Shah, P. (Eds.), Thinking withdata (pp. 233-265). New York, NY: Taylor & Francis Group, LLC.
McNeill, K. L., & Krajcik, J. (2008). Inquiry and scientific explanations: Helping students use evidence and reasoning. Science as inquiry in the secondary setting, 121-134.
McNeill, K. L., Lizotte, D. J, Krajcik, J., & Marx, R. W. (2006). Supporting students’ construction of scientific explanations by fading scaffolds in instructional materials. Journal of the Learning Sciences, 15(2), 153 – 191.
National Research Council. (1996). National science education standards. National Academies Press.
Norris, S. P., & Phillips, L. M. (1994). Interpreting pragmatic meaning when reading popular reports of science. Journal of Research in Science Teaching, 31, 947-967.
Paivio, A. (1986). Mental representations: A dual coding approach. New York: Oxford University Press.
Pallrand, G. J. (1996). The relationship of assessment to knowledge development in science education. Phi Delta Kappan, 78(4), 315.
Pressley, M., & McCormick, C. (1995). Cognition, teaching, and assessment. New York: HarperCollins College Publishers.
Purnell, K. N., & Solman, R. T. (1991). The influence of technical illustrations on students' comprehension in geography. Reading Research Quarterly, 277-299.
Rayner, K. (1998). Eye movements in reading and information processing: 20 years of research. Psychological bulletin, 124(3), 372.
Rayner, K. (2009). Eye movements and attention in reading, scene perception, and visual search. The quarterly journal of experimental psychology, 62(8), 1457-1506.
Rayner, K., Chace, K. H., Slattery, T. J., & Ashby, J. (2006). Eye movements as reflections of comprehension processes in reading. Scientific studies of reading, 10(3), 241-255.
Reid, D. J. (1990). The role of pictures in learning Biology: part 2, Picture-text processing. Journal of Biological Education, 24(4), 251-258.
Sadler, T. D. (2004). Informal reasoning regarding socioscientific issues: A critical review of research. Journal of Research in Science Teaching, 41(5), 513-536.
Salmon, W. C. (1998). Causality and explanation. New York: Oxford University Press.
Salvucci,D.D., & Anderson,J.R. (1998). Tracing eye movement protocols with cognitive process models. In Proceedings of the Twentieth Annual Conference of the Cognitive Science Society (pp.923-928). Hillsdale, NJ: Lawrence Erlbaum Associates.
Sanders, M. S., & McCormick, E. J. (1998). Human factors in engineering and design (p. 22). New York: McGraw-Hill.
Sandoval, W. A. (2003). Conceptual and epistemic aspects of students’ scientificexplanations. The Journal of the Learning Science, 12 (1), 5-51.
Sandoval, W. A., & Millwood, K. A. (2005). The quality of students’ use of evidence in written scientific explanations. Cognition and Instruction, 23(1), 23 – 55.
Sandoval, W. A., & Reiser, B. J. (2004). Explanation driven inquiry: Integrating conceptual and epistemic scaffolds for scientific inquiry. Science education, 88(3), 345-372.
Schmidt-Weigand, F., Kohnert, A., & Glowalla, U. (2010). A closer look at split visual attention in system- and self-paced instruction in multimedia learning. Learning and Instruction, 20, 100-110.
Sutherland, L. (2002). Developing problem solving expertise: the impact of instruction in a question analysis strategy. Learning and instruction, 12(2), 155-187.
Thorndyke, P. W. (1977). Cognitive structures in comprehension and memory of narrative discourse. Cognitive psychology, 9(1), 77-110.
Toulmin, S. (1958). The uses of argument. Cambridge, England: Cambridge University Press.
van Gog, T., & Scheiter, K. (2010). Eye tracking as a tool to study and enhance multimedia learning. Learning and Instruction, 20(2), 95-99.
Wellington, J. J. & Osborne, J. (2001). Language and literacy in science education. Buckingham: Open University Press.
Williams, L. M., Loughland , C. M., Green, M. J., Harris, A. W. F., & Gordon, E. (2003). Emotion perception in schizophrenia: An eye movement study comparing the effectiveness of risperidone vs. haloperidol. Psychiatry Research, 120(1), 13-27.
Wolverton, G. S., & Zola, D. (1983). The temporal characteristics of visual information extraction during reading. In Eye movements in reading (pp. 41-51).
Yang, F. Y. (2017). Examining the reasoning of conflicting science information from the information processing perspective—an eye movement analysis. Journal of Research in Science Teaching, 54(10), 1347-1372.
Yang, F. Y., Chang, C. Y., Chien, W. R., Chien, Y. T., & Tseng, Y. H. (2013). Tracking learners' visual attention during a multimedia presentation in a real classroom. Computers & Education, 62, 208-220.
Yore, L. D., & Shymansky, J. A. (1991). Reading in science: Developing and operational conception to guide instruction. Journal of Science Teacher Education, 2(2), 29-36.
Zuzovsky, R., & Tamir, P. (1999). Growth patterns in students' ability to supply scientific explanations: Findings from the third international mathematics and science study in Israel. International Journal of Science Education, 21(10), 1101-1121.
Zuzovsky, R., & Tamir, P. (1999). Growth patterns in students' ability to supply scientific explanations: Findings from the third international mathematics and science study in Israel. International Journal of Science Education, 21(10), 1101-1121.
中文部分
王琇怜(2014)。以眼球追蹤技術探討先備知識、閱讀歷程以及科學閱讀理解的關係。國立台灣師範大學科學教育研究所教學碩士班論文,台北市。
李孟柔(2016)。探討認知提示鷹架對國中七年級學生的生物概念學習與科學解釋能力之影響。交通大學理學院科技與數位學習學程學位論文,新竹市。
李美滿(2002)。探討高二學生對生物課本圖片詮釋之相關因素。國立台灣師範大學科學教育研究所教學碩士班論文,台北市。
林燕文、洪振方(2007)。話論證的探究對促進學童科學概念理解之探討。花蓮教育大學學報,24,139-177
張新仁、黃茂在、吳敏兒(2013)。十二年國民基本教育課程發展建議書擬議整合型研究──十二年國民基本教育教學資源發展(NAER-101-10-G-2-01-00-1-01)。臺北市:國家教育研究院。
教育部(2003)。科學教育白皮書。臺北市:教育部。
許良榮(1994)。科學課文的特性與學習。科學教育,170,23-36。
許良榮(2005)。序列性POE之特色與設計。國教輔導,45(2),6-12。
葉雅菁(2008)。高中生對生物課本中圖片的感受及對圖片的閱讀理解。國立台灣師範大學科學教育研究所教學碩士班論文,台北市。
劉嘉茹、侯依伶(2011)。以眼動追蹤技術探討先備知識對科學圖形理解的影響。教育心理學報,43(S),227-249。
蔡介立(2000)。從眼動控制探討中文閱讀的訊息處理歷程:應用眼動誘發呈現 技術之系列研究。國立政治大學心理學研究所博士論文。
蔡介立(2006)。眼球運動與閱讀歷程。眼球追蹤理論與技術研討會。台北市:國立台灣師範大學。
謝州恩、吳心楷(2005)。探究情境中國小學童科學解釋能力成長之研究。師大學報:科學教育類,50(2),55-84。