簡易檢索 / 詳目顯示

研究生: 謝佳叡
論文名稱: 中學數學實習教師之數學教學概念心像探究
An Investigation in Concept Images for Mathematics Teaching of Secondary School mathematics Intern Teachers.
指導教授: 謝豐瑞
學位類別: 博士
Doctor
系所名稱: 數學系
Department of Mathematics
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 294
中文關鍵詞: 數學教學概念心像數學實習教師教學情境學生知能學生情意學生參與學生思考
論文種類: 學術論文
相關次數: 點閱:308下載:95
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以數學教學概念心像(Concept Image for Mathematics Teaching, CIMT)的觀點,探討中學數學實習教師(以下簡稱為「實習教師」)在面對數學教學情境問題時,所展現出的教學決策其背後之依據。更具體地說,本研究試圖透過實習教師對於教學情境問題的反應,推論其數學教學概念心像的內涵與結構,進而探尋實習教師的核心數學教學概念心像,以及這些概念心像之間彼此的聯繫。透過文獻與辯證方式,本研究抽取學生知能、學生情意、學生思考、學生參與、教學方法、教學表徵選擇、教學期望和數學傳遞等八個教學概念作為數學教學概念心像探究的面向。

    本研究主要採用問卷調查法收集研究資料,在樣本方面則採取方便取樣方式對台師大九十七學年度參加數學科教育實習的74位實習教師進行普測,得到有效分析樣本數為63位,並透過「內容分析」、「歸納分析」等方法對所得資料進行質性分析。整體來說,研究發現實習教師的教學表現是一種教學概念心像調節的展現,且對於教學情境因素的改變也展現出十分敏感的調節機制。

    在蘊含教學情境的數學教學概念心像展現上,本研究發現實習教師無論在教學準備準備、單元教學、教學回饋等情境上,都展現對於學生知能與數學傳遞兩個面向的重視;而學生參與面向則在進入教學後才成為實習教師經常考量的面向。而學生情意面向、教學方法面向與表徵選擇面向則主要在新概念引入教學與學生不專心的處理上容易展現。另一方面,本研究發現實習教師在面對情境問題時並不常展現教學期望面向;學生思考面向則更是不受到實習教師重視,換言之,無論實習教師認為學生思考對數學學習有多重要,一旦面對情境問題時他們很少給予學生思考的時間與機會。

    在不含教學情境的數學教學概念心像展現上,本研究從各個數學教學概念心像面向的內涵以及彼此之間的關聯對實習教師進行分析。研究發現在數學教學概念心像內涵上,有一半以上的實習教師自發性展現學生情意、教學期望與數學傳遞等面向的心像,其類型也呈現多元的面貌;而研究也發現實習教師的數學教學概念心像經常相互的引動而非獨立存在,彼此之間呈現出一種錯綜複雜的關係。其中,又以學生知能與數學傳遞兩個面向與其他面向的關係最為密切。本研究進一步以全體實習教師為分析單位,透過離析實習教師們的核心概念心像,以及心像之間展現蘊轉現象和在情境脈絡上展現比例所形成的連結關係,描繪實習教師之數學教學概念心像結構圖。

    第壹章 緒 論 第一節 研究背景與動機………………………………………………………1 第二節 研究目的暨研究問題…………………………………………………7 第三節 名詞解釋………………………………………………………………8 第貳章 文獻探討 第一節 教師知識的相關研究………………………………………………12 第二節 概念心像的理論與研究……………………………………………29 第三節 關於數學教學概念心像面向探討…………………………………41 第參章 研究方法 第一節 研究理念……………………………………………………………52 第二節 研究設計……………………………………………………………54 第三節 研究對象與工具……………………………………………………61 第四節 研究分析方式………………………………………………………65 第五節 研究限制……………………………………………………………68 第肆章 教學情境維度下之數學教學概念心像分析 第一節 教學準備情境下之數學教學概念心像……………………………71 第二節 單元教學情境下之數學教學概念心像………………………… 101 第三節 教學回饋情境下之數學教學概念心像 …………………………131 第伍章 去脈絡之數學教學概念心像及其結構分析 第一節 數學實習教師關於數學教學之自發性心像……………………154 第二節 數學實習教師關於各數學教學概念心像面向分析……………183 第陸章 結論與建議 第一節 關於數學教學概念心像之探究結論……………………………237 第二節 對教學與後續研究建議…………………………………………249 參考文獻………………………………………………………………………252 附錄A:施測問卷………………………………………………………………… 262 附錄B:實習教師函數教學強調面向分類比例與原因一覽表………………… 279 附錄C:實習教師函數教學各面向規劃進行順序表…………………………… 283 附錄D:實習教師關於等差級數與其意義之概念心像分析表………………… 284 附錄E:實習教師自主規劃教學單元選擇一覽表……………………………… 286 附錄F:實習教師自主規劃教學單元選擇與原因實錄………………………… 287 附錄G:樣本教師對於「公式解」是否該納入國中教學回應實錄…………… 291

    中文部分:(註:中文部分出版年份以西元記年)
    Patton, M. Q. (1995)。質的評鑑與研究(吳芝儀、李奉儒 譯)。台北:桂冠出版社。
    孔企平(2003)。數學教學過程中的學生參與。上海市:華東師範大學出版社。
    王乃聖(2003)。國中生乘法公式結構之察覺與槪念心像。台北市:國立台灣師範大
    學數學系碩士論文。
    王仲春、李元中、顧莉蕾、孫名符(1995):數學思維與數學方法論。台北市:建宏
    出版社。
    任樟輝(1999)。數學思維論。廣西教育出版社。
    朱曉民(2006)。于漪語文教學知識發展研究。山西教育出版社。
    宋玉如(2008)。中學數學教師應有的數學教學特質研究──學生觀點。國立台灣師
    範大學數學研究所教學碩士論文(未出版)。
    李士錡(2001)。PME:數學教育心理。上海市:華東師範大學出版社。
    李昭慧(2003)。利用隸美弗定理解n次方根之槪念心像硏究。國立台灣師範大學數
    學系碩士論文(未出版)。
    李咏吟(1986)。教學原理。台北:遠流出版社。
    林崇德(2000)。學習與發展-中小學心理能力發展與培養。北京市:北京師範大學
    出版社。
    林進材(1997)。國民小學教師教學思考之研究。台灣師範大學教育研究所博士論文
    (未出版)。
    林福來(1997)。教學思維的發展:整合數學教學知識的教材教法(I)。行政院國
    科會專題研究計畫報告(No. NSC 86-2511-S-003-025)。台北市:臺灣師大數學
    系。
    邱美虹(1997)。國中科學教師特質與其檢定之研究(I):比較初任科學教師與資
    深科學教師知識與技能表現之研究。行政院國科會專題研究計畫報告(No.
    NSC 84-2513-S-003-004)。台北市: 臺灣師大科學教育研究所。
    范良火(2003)。教師教學知識發展研究。上海市:華東師範大學出版社。
    唐書志(2008)。中學數學實習教師教學表現預判之信念結構。國立台灣師範大學數
    學系博士論文(未出版)。
    唐書志、謝佳叡(2011)。中學數學實習教師的信念。謝豐瑞主編:TEDS-M 國際
    數學師資培育跨國研究國家報告。台北市:國立台灣師範大學數學系(印刷
    中)。
    張春興(1996)。教育心理學—三化取向的理論與實踐。台北市:東華書局。
    張春興(2001)。現代心理學—現代人研究自身問題的科學。台北市:東華書局。
    張春興(2006)。張氏心理學辭典。台北市:東華書局。
    張奠宙(主編)(1994)。數學教育研究引論。南京市:江蘇教育出版社。
    教育百科辭典編審委員會(1994)。教育百科辭典。台北市:五南出版社。
    教育部(2000)。國民中小學九年一貫課程暫行綱要。台北:作者。
    教育部(2010)。國民中學九年一貫課程綱要數學學習領域。台北市:作者。
    黃浩森、張昌義(1996)。知識與思維。福州市:福建教育出版社。
    黃凱旻、金鈐(2004)。一個輔導中學數學實習教師教學概念轉變的行動研究。師大
    學報:科學教育類。48(1),23-46。
    劉清華(2004)。教師知識的模型建構研究。北京市:中國社會科學出版社。
    謝佳叡(2001)。國中生配方法學習歷程中數學思維研究。國立台灣師範大學數學系
    碩士論文(未出版)。
    謝佳叡(2003)。從算術思維過渡到代數思維。載於教育部九年一貫數學學習領域綱
    要諮詢意見小組(林福來等主編),九年一貫數學學習領域綱要諮詢意見—理
    念篇(未出版)。
    鍾靜(2003年10月)。論九年一貫課程數學領域之暫行綱要。課程綱要實施檢討與展
    望研討會。國立臺灣師範大學實習輔導處主辦。
    魏姿玟(2010)。國中七年級學生在代數課堂中思考如何解例題的現象。國立台灣師
    範大學數學系碩士論文(未出版)。
    英文部分:
    Abelson, R. P. (1979). Differences between belief and knowledge systems. Cognitive
    Science, 3, 355-366.
    Akkoc, H. (2008). Pre-service mathematics teachers' concept images of radian
    International Journal of Mathematical Education in Science and Technology, 39(7),
    857-878.
    Ball, D. L. (1990). The mathematical understandings that prospective teachers bring to
    teacher education. Elementary School Journal, 90, 449-466.
    Baron, J. B., & Sternberg, R. J. (1987). Teaching thinking skills: Theory and practice. New
    York: Freeman.
    Baturo, A. & Nason, R.(1996). Stude nt teachers’ subject knowledge within the domain of
    area measurement. Educational Studies in Mathematics, 31, 235-267.
    Beswick, K. (2005). The belief/practice connection in broadly defined contexts.
    Mathematics Education Researach Journal, 17(2), 39-68.
    Biggs J. B. (1987) Student approaches to learning and studying. Hawthorn: Australian
    Council gor for Educational Research (ACER).
    Biggs J. B. (1993) Teaching for learning: The view from cognitive psychology. Hawthorn:
    Australian Council gor for Educational Research (ACER).
    Bingolbali, E., & Monaghan, J. (2007). Concept image revisited. Educational Studies in
    Mathematics, 68(1), 19-35.
    Bishop, A. J. (1989). Review of research on visualization in mathematics education. Focus
    on Learning Problems in Mathematics, 11(1), 7-16.
    Bloom, B.S. (Ed.) (1956). Taxonomy of educational objectives: The classificaion of
    educational goals. Handbook I: Cognitive dimain. New York: Longman.
    Borko, H., Eisenhart, M., Brown, C. A., Underhill, R. G., Jones, D., & Agard, P. C. (1992).
    Learning to teach hard mathematics: Do novice teachers and their instructors give
    up too easily? Journal for Research in Mathematics Education, 23, 194–222.
    Brickhouse, N. W. (1990). Teachers’ beliefs about the nature of science and their
    relationship to classroom practice. Journal of Teacher Education, 41(3), 53-62.
    Bromme, R. (1994). Beyand subject matter: A psychological topology of teachers’
    professional knowledge. In R. B. Dordrecht (Ed.), Didactics of mathematics as a
    scientific discipline (pp. 73-88). Boston: Kluwer Academic Publishers.
    Brown, M.(1998) The paradigm of modeling by iterative conceptualization in mathematics
    education research. In A. Sierpinska & J. Kilpatrick (Ed.) Mathematics education
    as a research domain: a search for identity. Boston: Kluwer Academic Publishers.
    Bruner, J. S. (1966). Toward a theory of instruction. NY: Norton.
    Carpenter, T. P., Fennema, E., & Franke M L. (1997). Cognitive guided instruction: a
    knowledge base for reform in primary mathematics instruction. The Elementary
    School Journal, 97(1), 3-20.
    Carpenter, T. P., Fennema, E., Peterson, P. L., & Carey, D. A. (1988). Teachers’
    pedagogical content knowledge of students’ problem solving in elementary
    arithmetic. Journal for Research in Mathematics Education, 19(5), 385-401.
    Carter, K. (1990). Teachers’ knowledge and learning to teach. In M. H. W. R. Houston, & J.
    Sikula (Ed.), Handbook of research on teacher education (pp. 291-310). New York:
    Macmillan.
    Cochran, K. F., DeRuiter, J. A., & King, R. A. (1991, April). Pedagogical content
    knowledge: A tentative model for teacher preparation. Paper presented at the
    Annual Meeting of the American Educational Research Association (AERA),
    Chicago, IL.
    Cochran, K. F., DeRuiter, J. A., & King, R. A. (1993). Pedagogical content knowing:An
    integrative model for teacher preparation. Journal of Teacher Education, 44(4),
    263-272.
    Connell, J. (1990). Context, self, and action: A motivational analysis of self-system
    processes across the life-span. In: D. Cicchetti (Ed.) The self in transition: From
    infancy to childhood. Chicago: University of Chicago.
    255
    Cooney, T. J. (1985). A beginning Teacher's view of problem solving. Journal for
    Research in Mathematics Education, 16(5), 324-336.
    Cooney, T. J. (1994). Research and teacher education: in search of common ground.
    Journal for Research in Mathematics Education, 25(6), 608-636.
    Cooney, T. J.(2001). Considering the paradoxes, perils, and purposes of conceptualizing
    teacher development. In F.-L. Lin (Ed.), Making sense of mathematics teacher
    education. Dordrecht: Kluwer Academic Publish.
    Daskalogianni, K., & Simpson, A. (2000). Towards a definition of attitude: the relationship
    between the affective and the cognitive in pre-university students. Proceedings of
    PME 24, vol.2, 217-224, Hiroshima, Japan.
    Davis, R. (1984). Learning mathmatics: The cognitive science approach to mathematics
    education. London: Croom Felm.
    Deng, Z. (2007). Transforming the subject matter: Examining the intellectual roots of
    pedagogical content knowledge. Curriculum Inquiry, 37(3), 17.
    Eisenhart, M., Borko, H., Underhill, R., Brown, C., Jones, D., & Agard, P. (1993).
    Conceptual knowledge falls through the cracks: Complexities of learning to teach
    mathematics for understanding. Journal for Research in Mathematics Education, 24
    (1), 8-40.
    Elbaz, F. (1981). The teacher’s “practical knowledge”: report of a case study. Curriculum
    Inquiry, 11(1), 43-72.
    Elbaz, F. (1983). Teacher thinking: A study of practical knowledge. New York: Nichols
    Publishing Company Press.
    Erickson, F. (1992). Students’ experience of the curriculum. In P. Jackson (Ed.) Handbook
    of research on curriculum. New York: Macmillan.
    Ernest, P.(1989). The impact of beliefs on the teaching of mathematics. In P. Ernest (Ed.)
    Mathematics teaching: The state of the art (pp. 249-254), London, Falmer Press.
    Even, R. (1993). Subject-matter knowledge and pedagogical content knowledge:
    Prospective secondary teachers and the function concept. Journal for Research in
    Mathematics Education, 24(2), 94-116.
    Fennema, E., Franke M L. (1992). Teachers’ knowledge and its impact. In D. A. Grouws
    (Ed.), Handbook of research on mathematics teaching and learning (pp. 147-164).
    New York: Macmillan Publishing Company.
    Fodor, J. A., Walker, E.C., & Parkes, C. H. (1980). Against definition. Cognitive, 8(3).
    263-367.
    Fontana, D. (1988). Psychology for teachers. London: Macmillan.
    Furinghetti, F. & Pehkonen, E. (2002). Rethinking Characterizations of Beliefs. In G. C.
    Leder, E. Pehkonen, & G. Törner (Eds.), Beliefs: A Hidden Variable in
    Mathematics Education? (pp.39-57) Netherlands: Kluwer Academic.
    256
    Gage, N. L. (Ed.) (1963). Handbook of research on teaching. Chicago: Rand McNally.
    Gagné, R. M. (1985). The Conditions of learning (4th ed.). New York: Holt, Rinehart &
    Winston .
    Goldin, G. A., & Kaput, J. J. (1996). A joint perspective on the idea of representation in
    learning and doing mathematics. In L. P. Steffe and P. Nesher (Eds.), Theories of
    mathematical learning (pp. 397-430) . Mahwah NJ: Lawrence Earlbaum.
    Griffin, L. (1996). Pedagogical content knowledge for teachers: Integrate everything you
    know to help students learn . Journal of Physical Education, Recreation & Dance. ,
    67(9), 58-61.
    Grossman, P. L. (1989). A study in contrast sources of pedagogical content knowledge for
    secondary English. Journal of Teacher Education, 40(5), 24-31.
    Grossman, P. L. (1991). The Making of a teacher: Teacher knowledge and teacher
    education. New York: Teachers College Press.
    Grossman, P. L., Wilson S M., Shulman L S. (1989). Teachers of substance: Subject matter
    knowkedge for teaching. In M. C. Reynolds (Ed.), Knowledge base for the
    beginning teacher (pp. 23-36). Oxford: Pergamon Press.
    Gudmundsdottir, S. (1990). Values in pedagogical knowledge. Journal of Teacher
    Education, 41(3), 44-52.
    Hadamard, J. (1945). The psychology of invention in the mathematical field. Princeton:
    Princeton University Press.
    Hannula, M. S. (2004) Regulating motivation in mathematics. Paper presented at the Topic
    Study Group 24 of ICME-10 conference. ational Research Association (AERA),
    Washington, D. C. Retrieced May 9, 2011, from
    http://www.icme-organisers.dk/tsg24/Documents/Hannula.doc
    Hart L. (1989). Describing the Affective Domain: Saying What We Mean. In D. B.
    McLeod & V. M. Adams (Eds.), Affect and mathematical problem solving: A new
    perspective (pp. 37-45). NY: Springer-Verlag.
    Hiebert, J., & Carpenter, T. (1992). Learning and teaching with understanding, In D.
    Grouws (Ed.), Handbook of research on mathematics teaching and learning.
    Macmillan Publishing Company.
    Hill, H.C., Rowan, B., & Ball, D.L. (2005). Effects of teachers' mathematical knowledge
    for teaching on student achievement. American Educational Research Journal,
    42(2), 371-406.
    Hill, H. C., Schilling, S. G., & Ball, D. L. (2004). Developing measures of teachers'
    mathematics knowledge for teaching. The Elementary School Journal, 105(1),
    11-30.
    Hill, H. C., Sleep, L., Lewis, J. M., & Ball, D. L. (2007). Assessing teachers' mathematical
    knowledge: What knowledge matters and what evidence counts? In F. K. Lester
    (Ed.), Second handbook of research on mathematics teaching and learning (pp.
    111-155). Charlotte, NC: Information Age Publishing.
    Hoyles, C. (1992). Mathematics teaching and mathematics teachers: A meta-case study.
    For the Learning of Mathematics, 12(3), 32-44.
    Hsieh, F.-J., Law, C.-K., Shy, H.-Y., Wang, T.-Y., Hsieh, C.-J. & Tang, S.-J. (2011).
    Mathematics Teacher Education Quality in TEDS-M: Globalizing the Views of
    Future Teachers and Teacher Educators. Journal of Teacher Education, 62(2),
    172–187.
    Jackson, P. W. (1968). Life in classroom. New York: Holt, Rinehart & Winston.
    Jackson, P. W. (1986). The practicing of teaching. New York: Teachers College Press.
    Kaput, J. (1991) Notionas and representations as mediators of constructive proceses. In E.
    von Glasersfeld (Ed.), Radical constructivism in mathematics education, 53-74.
    Netherlands: Kluwer Academic Publishers.
    Kitchener, R. F. (1986). Piaget's theory of knowledge : Genetic epistemology & scientific
    reason. New Haven : Yale University Press.
    Krathwohl, D. R., (2004). A revision of Bloom's taxonomy: An overview. Theory into
    Practice, 41(4), 212- 218.
    Krathwohl, D. R., Bloom, B. S., & Masia, B. B. (1964). Taxonomy of educational
    objectives: The classificaion of educational goals. Handbook II: Affective dimain.
    New York: Longman.
    Laksov, K. B., Nikkola, M., & Lonka, K. (2008). Does teacher thinking match teaching
    practice? A study of basic science teachers. Medical Education, 42(2), 143-151.
    Lee, B. S.(1992). An investigation of prospective secondary mathematics teachers’
    understanding of the mathematical limit concept. Doctoral Dissertation, Michigan
    State University, East Lansing, Michigan
    Leinhardt, G., & Smith, D. (1985). Expertise in mathematics instruction: Subject matter
    knowledge. Journal of Educational Psychology, 77(3), 247-271.
    Lester, F. K., & Garofalo, J. (1987, April). The influence of affects, beliefs, and
    metacognition on problem-solving behavior: Some tentative speculations. Paper
    presented at the annual meeting of American Educational Research Association
    (AERA), Washington, D. C.
    Mandler, G. (1984). Mind and Body: Psychology of emotion and stress. N Y: Norton.
    Marks, R. (1990). Pedagogical Content knowledge: From a mathematics case to a modified
    conception. Journal of Teacher Education, 41(3), 3-11.
    Mayer, R. E. (1983). Thinking, problem solving, cognition. NY: W. H. Freeman and
    Company.
    McLeod, D. B. (1992). Research on affect in mathematics education: A
    Reconceptualization. In D. A. Grouws (Ed.) Handbook of research on mathematics
    teaching and learning (pp. 575-596). NY: Macmillan.
    Meece, J. L., Blumenfeld P. C., & Hoyle, R. H. (1988). Student goal orientations and
    cognitive engagement. Journal of Educational Psychology, 80(4), 514-523.
    Meredith, A. (1993). Knowledge for teaching mathematics: some student teachers’ views.
    Journal of Education for Teaching, 19(3), 323-338.
    Miserandino, M. (1996).Children who do well in school: Individual differences in
    perceived competence and autonomy in above-average children. Journal of
    Educational Psychology, 88(2), 203-214.
    Mohr, M. (2006) Mathematics Knowledge for Teaching. School Science & Mathematics,
    106(6), 219.
    National Council of Teacher of Mathematics. (1991). Professtional standares for teaching
    mathematics. Reston, VA: Author.
    National Council of Teacher of Mathematics. (2000). Principles and standards for school
    mathematics. Reston, VA: Author.
    Newmann, F. M. (1992). Student engagement and achievement in American secondary
    school. New York: Teachers College Press.
    Niess, M. L. (2005). Preparing teachers to teach science and mathematics with technology:
    developing a technology pedagogical content knowledge. Teaching and Teacher
    Education, 21(5), 509–523.
    Noss, R., & Hoyles, C. (1995). The Dark Side of the Moon. In R. Sutherland & J. Mason
    (Eds.), Exploiting mental imagery with computers in mathematics education (pp.
    191-201). New York, NY: Springer-Verlag.
    Nystrand, M. (1991). Student engagement: When recitation becomes conversation. In H. C.
    Waxman (Ed.) Effective teaching: Current research, (pp. 257-276) Berleley:
    McCutchan publishing corporation..
    Op’t Eynde, P., De Corte, E., & Verschaffel, L. (2002) Framing Students’
    Mathematics-Related Beliefs. In G. C. Leder, E. Pehkonen & G. Törner (Eds.),
    Beliefs: a hidden variable in mathematics education? Netherlands: Kluwer
    Academic Publishers.
    Patrick, B. C., Skinner, E. A., & Connell, J. (1993). What moticates children’s behavior
    and emotion? Joint effects of perceived control and autonomy in the academic
    domain. Journal of Personality and Social Psycholog, 65(4). 781-791.
    Piaget, J., & Inhelder, B. (1967). The child’s conception of space. NY: W. W. Norton.
    Pintrich, P. R., & Schrauben, B. (1992). Student motivational beliefs and their cognitive
    engagement in classroom academic tasks. In D. H. Schunk & J. L. Meece (Eds)
    Student perceptions in the classroom, (pp. 149-183). NJ: Lawrence Erlbaum
    Associates, Inc.
    Philipp, R. A. (2007). Mathematics teachers’ beliefs and affect. In F. K. Lester, Jr., (Ed.),
    Second Handbook of Research on Mathematics Teaching and Learning
    (pp.257-315). Charlotte, NC, U.S.: Information Age.
    Polya, G. (1957). How to solve it. NY: Doubleday Anchor.
    Post, T. R., Harel, G. H., Behr, M. J. & Lesh, R.(1991) Intermediate teachers’ knowledge
    of rational number concepts. In: E. Fennema, T. P. Carpenter & S. J. Lamon (Eds)
    Integrating Research on Teaching and Learning Mathematics. Albany, NY: State
    University of New YorkPress
    Quinton, A. (1967). Knowledge and perception. In P. Edwards (Ed.) The Encyclopedia of
    Philosophy, vol.4, 345-352. New York: Macmillan.
    Raymond, A. M. (1997). Inconsistency between a beginning elementary school teacher’s
    mathematics beliefs and teaching practice. Journal for Research in Mathematics
    Education, 28(5), 550-576.
    Reber, A. S. (1995). Dictionary of psychology. England: Penguin Books.
    Resnick, L., & Ford, W. (1981). The psychllogy of mathematics for Instruction. Hillsdale,
    NJ: Lawrence Erlbaum Associates.
    Reyes, L. H. (1984). Affective variables and mathematics education. Elementary School
    Journal, 84, 558-581.
    Rokeach, M. (1968). Beliefs, attitudes, and values: A theory of organization and change.
    London: Jossey-Bass.
    Saylor, J. G., Alexander, W. M., & Lewis, A. J. (1981). Curriculum planning for better
    teaching and learning. NY: Holt, Rinehart and Winston.
    Schmidt, W. H., Tatto, M. T., Bankov, K., Blömeke, S., Cedillo, T., Cogan, L., . . .
    Schwille, J. (2007). The preparation gap: Teacher preparation for middle school
    mathematics in six countries (MT21 report). East Lansing, MI: Center for Research
    in Mathematics and Science Education. Retrieved May 1, 2011, from
    http://usteds.msu.edu/MT21Report.pdf
    Schwarz, B., & Hershowitz, R. (1999). Prototypes: Brakes or levers in learning the
    function concept? The role of computer tools. Journal for Research in Mathematics
    Education, 30(4), 362.
    Semadeni, Z. (2008). Deep intuition as a level in the development of the concept image.
    Educational Studies in Mathematics, 68(1), 1-17.
    Sfard, A. (1991). On the dual nature of mathematical conceptions: reflections on processes
    and objects as different sides of the same coin. Educational Studies in Mathematics,
    22(1), 1-36.
    Shope, R. (1983). The analysis of knowledge: A decade of research. NJ: Princeton
    University Press. `
    Shulman, L. S. (1986a). Those who understanding : knowledge growth in teaching.
    Educational Researcher, 5(2), 4-14.
    260
    Shulman, L. S. (1986b). Paradigms and research programs in the study of teaching: A
    contemporary. In M. C. Wittrock (Ed.), Handbook of research on teaching(pp.
    3-36). New York: Macmillan.
    Shulman, L. S. (1987). Knowledge and teaching: Foundation of the new reform. Harvrad
    Educational Review, 57(1), 1-22.
    Skinner, E. A. & Belmont, M. J. (1993). Motivation in classroom: Reciprocal effects of
    teacher behavior and student engagenent across the school year. Journal of
    Educational Psychology, 85(4), 571-581.
    Sowder, J. T. (2007). The mathematical education and development of teachers. In F. K.
    Lester (Ed.), Second handbook of research on mathematics teaching and learning
    (pp. 157-223). Charlotte, NC: Information Age Publishing.
    Suharwoto, G. L., & Kwang, H. (2005, March). Assembling the pieces together: what are
    the most influential components in mathematics preservice teachers' development of
    technology pedagogical content knowledge (TPCK)? Paper presented at the Annual
    Meeting of the Society for Information Technology & Teacher Education (SITE),
    Phoenix, AZ.
    Tall, D. (1989). Concept Images, Generic Organizations, Computers, and Curriculum
    Change. For the Learning of Mathematics: An International Journal of
    Mathematics Education, 9(3), 37-42.
    Tall, D., & Vinner, S. (1981). Concept image and concept definition in mathematics with
    particular reference to limits and continuity Educational Studies in Mathematics,
    12(2), 151-169.
    Tall, D.,& West. B. (1986). Graphic insight into calculus and differential equations. In A.
    G. Howson, and J.-P. Kahane, The influence of computers and informatics on
    mathematics and its teaching. ICMI Study Series,(pp. 107-119). Strasbourg:
    Cambridge University Press.
    Tatto, M. T., Schwille, J., Senk, S., Ingvarson, L., Peck, R., & Rowley, G. (2008): Teacher
    Education and Development Study in Mathematics (TEDS-M): Conceptual
    framework. East Lansing, MI: Teacher Education and Development International
    Study Center, College of Education, Michigan State University.
    Thompson, A. G. (1984). The relationship of teachers' conceptions of mathematics and
    mathematics teaching to instructional practice. Educational Studies in Mathematics,
    15(2), 105-128.
    Törner, G. (1997). Views of German Mathematics Teachers on Mathematics. In J. A.
    Dossey & J. O. Swafford et al. (Eds.), Proceedings of the 19th annual meeting of
    the north american chapter of the international group for the psychology of
    mathematics education, vol. 1, (pp.275-281). Columbus (OH): ERIC Clearinghouse
    for Science, Mathematics and Environmental Education. Retrieved from
    http://logistik.math.uni-duisburg.de/pdf/PME-NA-19.pdf
    Vergnaud, G. (1998). Towards a cognitive theory of practice. In A. Sierpinska and J.
    Kilpatrick (Eds.), Mathematics education as a research domain: A search for
    identity: an ICMI study. 227-240. Boston : Kluwer Academic Publishers.
    Viadero, D. (2004). Teaching Mathematics Requires Special Set of Skills. Education
    Week, 24(7), 8.
    Vinner, S. (1983). Concept definition, Concept image and the Notion of Function.
    International Journal of Mathematical Education in Science and Technology, 14(3),
    239-305.
    Vinner, S. (1991). The role of definitions in the teaching and learning of mathematics. In D.
    Tall (Ed.), Advanced mathematical thinking (pp. 65-81). Netherlands: Kluwer
    Academic Publishers.
    Vinner, S., & Dreyfus, T. (1989). Images and Definitions for the Concept of Function.
    Journal for Research in Mathematics Education, 20(4), 356-366.
    Vinner, S., & Hershkowitz, R. (1980). Conecpt images and common cognitive paths in the
    development of some simple geometrical concepts. Paper presented at the the 4th
    International Conference for the Psychology of Mathematics Education, Berkeley.
    Vinner, S., & Hershkowitz, R. (1983). On concept formation in geometry. Zentralblatt fur
    Didaktik der Mathematik, 83(1),20-25.
    Ward, R. A. (2004). An Investigation of K-8 Preservice Teachers' Concept Images and
    Mathematical Definitions of Polygons. Issues in Teacher Education, 13(2), 39-56.
    Wilson, S. M., Shulman, L.S. & Richert, A.E. (1987). 150 different ways' of knowledge:
    representations of knowledge in teaching. In J. Calderhead (Ed.), Exploring
    teachers' thinking. London: Cassell Educational Limited.
    Zan, R., & Di Martino, P. (2007). Attitude toward mathematics: Overcoming the
    positive/negative dichotomy. The Montana Mathematics Enthusiast, Monograph 3,
    157-168. The Montana Council of Teachers of Mathematics.
    Zembylas, M. (2007). Emotional ecology: the intersection of emotional knowledge and
    pedagogical content knowledge in teaching. Teaching and Teacher Education: An
    International Journal of Research and Studies, 23(4)..

    下載圖示
    QR CODE