簡易檢索 / 詳目顯示

研究生: 楊子潔
Yang, Tzu-Chieh
論文名稱: 運用眼球追蹤法分析論證架構的閱讀及元素區辨與科學認識信念之關係
Using the eye tracking method to analyze the reading and identification of argument structure and the relation with scientific epistemic beliefs.
指導教授: 楊芳瑩
Yang, Fang-Ying
口試委員: 楊芳瑩
Yang, Fang-Ying
蔡孟蓉
Tsai, Meng-Jung
王嘉瑜
Wang, Chia-yu
口試日期: 2022/06/10
學位類別: 碩士
Master
系所名稱: 科學教育研究所
Graduate Institute of Science Education
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 97
中文關鍵詞: 科學論證論證架構科學認識信念科學辯證信念眼球追蹤技術
英文關鍵詞: scientific argumentation, justification beliefs, eye-tracking technique
DOI URL: http://doi.org/10.6345/NTNU202200673
論文種類: 學術論文
相關次數: 點閱:134下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 現今科學教育的目標多強調培養具有「科學素養」的公民,能了解科學的貢 獻與限制、能善用科學知識與方法、能以理性積極的態度與創新的思維,面對日 常生活中各種與科學有關的問題,能做出評論、判斷及行動。本研究的設計主要 是利用眼球追蹤技術探討台灣北區大學以上學生的科學論證元素區辨表現、閱讀 科學論證教材的閱讀歷程與科學辨證信念的關係。基於研究動機與目的,本研究 有四個研究主軸與相關問題:一、探討台灣北部地區大學以上學生的科學論證元 素區辨表現;二、探討閱讀科論論證元素教材時的閱讀歷程;三、探討台灣北部 地區大學以上學生的科學辯證信念;四、分析科學論證元素區辨表現、閱讀歷程 與科學辯證信念的交互關係。此外,研究中亦分析了學科背景與性別的差異。因 此本研究之三個主要研究變項為大學以上學生「對科學論證結構的理解」、「閱讀 科學論證元素介紹教材時的閱讀歷程」與「學生的科學辯證信念」,以及上述三 者的交互關係。研究中的閱讀材料擷取自科學人雜誌,於閱讀過程中以眼球追蹤 技術紀錄受試者的閱讀過程資料,並運用研究者發展之「科學論證元素區辨測驗」 以了解受試者是否理解科學論證的結構,最後以「科學辯證信念問卷」偵測學生 的科學認識信念。本研究使用的研究工具主要分為 Tobii X3-120 眼動儀、科學論 證元素閱讀教材、論證元素辯證前後測,以及辯證信念問卷。
    結果顯示,大學生對論證架構元素的區辨表現在前測時,非理組比理組佳、女生比男生佳;但經閱讀論證架構教材後則是理組比非理組佳、而女生依然比男生佳。大學生閱讀論證架構時注意力主要放在論證定義、論證架構、證據定義;閱讀論證實例時,注意力則放在資料、標準、反駁、主張。無論是理組、非理組、男生或女生經由閱讀科學論證介紹教材可以提昇科學論證架構元素的區辨表現。而論證元素區辨前測與主張、資料、論證等區域的眼動指標相關達顯著; 論證元素區辨後測與主張、資料、論證等區域的眼動指標相關達顯著;前後測之 差距(進步幅度)則與標準、主張、反駁、論證、問題等區域的眼動指標相關達顯著。在科學辯證信念方面,對女生來說,越不相信權威辯證信念,後測平均準確率越高;對理組來說,越相信多方資料辯證信念,後測平均準確率越高。

    Nowadays, the goal of science education mostly emphasizes the cultivation of citizens with "scientific literacy.” Such citizens should understand the contributions and limitations of science, make good use of scientific knowledge and methods, face various science related problems in daily life with a rational and positive attitude and innovative thinking, and make comments, judgments and actions. Above requirements have much to do with the ability to perform scientific argumentation. This study aimed to explore the relationships among learning, understanding of TAP (Toulmin’s Argument Pattern) structure and scientific epistemic beliefs of college students in Northern Taiwan. Based on the research purpose, this study involved the following three research tasks. The first was to explore college students’ ability to identify the elements of the TAP structure. The second was to explore how students learned the TAP structure with an online reading material designed to introduce TAP by applying the eye tracking method. The last task was to explore students’ scientific epistemic beliefs, and to analyze the relationships with the learning and understanding of the TAP structure. The three main research variables of this study were College Students' “performance of identifying the elements of TAP structure," “visual attention patterns to the reading material” and "Scientific epistemic beliefs." The reading material were adopted from 5 articles published in a popular science magazine, “Scientific American.” During reading, students’ eye movements were recorded by the Tobii X3-120 eye tracking system. Two element identification tests were developed to assess students’ understanding about TAP structure before and after the reading activity. Meanwhile, students’ scientific epistemic beliefs were examined by the Justification Beliefs Questionnaire .
    The results show that students in social-study majors performed better the
    understanding of TAP than did those in science majors, and females received higher scores than males did. When participants were reading TAP material, they focused more on argument definitions, argument framework, and evidence definitions. Meanwhile, when reading TAP examples, more attention was given to data, criteria, rebuttals, and claims. Our study showed that reading the TAP material designed in the study improved students’ performance of identifying the elements of TAP structure. In terms of scientific justification beliefs, for girls, the less they believed in Justification by Authority, the higher scores of the post-test they demonstrated. For students in science majors, the more they believed in Justification by multiple sources the higher scores of post-test they got.

    摘要 I Abstract III 目錄 V 表目錄 VIII 圖目錄 X 第一章 緒論 1 第一節 研究背景與動機 1 第二節 研究目的 3 第三節 研究範圍與限制 4 第四節 名詞釋義 5 第二章 文獻探討 7 第一節 科學論證理論基礎 7 第二節 認識觀 11 一、 何謂認識觀 11 二、 科學認識觀 12 三、 科學認識觀與科學的教與學 13 第三節 提升論證能力的教學方式與影響因素 15 一、 論證教學 15 二、 本研究之教學教材 17 三、 先備知識及性別對論證能力發展的影響 18 第四節 眼球追蹤技術之教育研究的應用 19 一、 注意力與眼球運動 19 二、 眼球追蹤法應用於學習議題之探究 19 第三章 研究方法 21 第一節 研究對象 21 第二節 研究架構與設計 22 第三節 研究流程 23 第四節 研究工具 24 一、 科學論證元素區辨測驗 24 二、 科學辨證信念問卷 25 三、 眼球追蹤儀器之相關軟硬體設備 27 第五節 資料處理與分析 31 一、 科學論證元素區辨前後測 31 二、 科學辨證信念問卷 31 三、 眼動歷程分析 31 四、 研究資料之統計分析 32 第四章 資料呈現與分析 34 第一節 區辨論證元素之表現 34 第二節 學習論證模式的注意力之分析 39 一、 閱讀論證架構的注意力分析 39 二、 閱讀論證實例的注意力分析 42 第三節 論證架構理解與眼動歷程的相關分析 45 ㄧ、論證架構理解與閱讀論證架構之眼動歷程 45 二、論證架構理解與閱讀論證實例的眼動歷程 50 第四節 科學認識信念與論證架構理解及眼動歷程之關係 55 一、 受試者知識辯證信念概況 55 二、 知識辯證信念與論證架構理解分析 57 三、 知識辯證信念與眼動資料分析 58 第五章 綜合討論與展望 68 第一節 論證架構理解的理解表現 68 第二節 學習論證模式時的注意力模式 70 一、 論證架構 70 二、 論證實例 71 第三節 論證架構理解表現與眼動指標之相關 72 一、 論證架構 72 二、 論證實例 74 第四節 辯證信念與論證架構及眼動指標之相關 76 一、 辨證信念與論證架構理解之相關分析 76 二、 辨證信念與眼動資料相關分析 76 第五節 研究結果的教學意義 80 一、 提升學生對論證架構的理解 80 二、 眼動資料分析結果 80 三、 辯證信念分析結果 81 參考文獻 82 附錄一:科學論證介紹教材 89 附錄二:科學辯證信念問卷 96

    方廷榕(2011)。國中學生的解題策略與推理歷程研究-以一個非例行性問題為例。中原大學教育研究所碩士論文。
    李亭誼(2011)。探討不同科學認識觀的八年級學生在社會性科學議題上論證能力的表現。國立臺灣師範大學科學教育研究所碩士論文。
    教育部(2018)。十二年國民基本教育課程綱要總綱。臺北市:教育部。
    黃珮玉和劉嘉茹(2005)。高一學生科學認識論信念與概念改變對照之研究—以溶解概念為例。論文發表於第二十一屆科學教育學術研討會。彰化:彰化師範大學。
    楊文宗(2012)。運用數位論證模式提升學生論證與PISA科學能力之研究。國立交通大學教育研究所碩士論文。
    蔡介立(2006)。眼球運動與閱讀歷程。眼球追蹤理論與技術研討會。台北市:國立台灣師範大學。
    鄭嘉惠(2020)。從認知歷程角度探討學生線上學習以及論證表現。國立臺灣師範大學科學教育研究所博士論文。
    Baker, D. (2013). What works: Using curriculum and pedagogy to increase girls’ interest and participation in science and engineering. Theory Into Practice,52(1): 14–20.
    Baytelman, A., Iordanou, K., Constantinou, C. P. (2020). Epistemic beliefs and prior knowledge as predictors of the construction of different types of arguments on socioscientific issues. Journal of Research in Science Teaching, 57, 1199-1227.
    Bell, P., & Linn, M. C. (2000). Scientific arguments as learning artifacts: Designing for learning from the Web with KIE. International Journal of Science Education, 22(8), 797-817.
    Bråten, I., Ferguson, L. E., Strømsø, H. I., & Anmarkrud, Ø. (2013). Justification beliefs and multiple-documents comprehension. European Journal of Psychology of Education, 28(3), 879-902.
    Cavagnetto, A. R. (2010). Argument to foster scientific literacy: A review of argument interventions in K-12 science contexts. Review of Educational Research, 80(3), 336-371.
    Chen, H. T., Wang, H. H., Lu, Y. Y., & Hong, Z. R. (2019). Bridging the gender gap of children’s engagement in learning science and argumentation through a modified argument-driven inquiry. International Journal of Science and Mathematics Education, 17(4), 635-655.
    Cheng, C. H., Bråten, I., Yang, F. Y., & Brandmo, C. (2022). Investigating structural relationships among upper‐secondary school students' beliefs about knowledge, justification for knowing, and Internet‐specific justification in the domain of science. Journal of Research in Science Teaching, 58(7), 980-1009.
    Christenson, N., Gericke, N., & Chang Rundgren, S.-N. (2017). Science and language teachers’ assessment of upper secondary students’ socioscientific argumentation. International Journal of Science and Mathematics Education, 15, 1403-1422.
    Conley, A.M., Pintrich, P.R., Vekiri, I., & Harrison, D. (2004). Changes in epistemological beliefs in elementary science students. Contemporary Educational Psychology, 29, 186-204.
    Driver, R., Newton, P., & Osborne, J. (2000). Establishing the norms of scientific argumentation in classrooms. Science Education, 84(3), 287-312.
    Duschl, R., & Osborne, J. (2002). Supporting and promoting argumentation discourse in science education. Studies in Science Education, 38, 39-72.
    Elder, A. D. (2002). Characterizing fifth grade students' epistemological beliefs in science. In B. K. Hofer & P. R. Pintrich (Eds.), Personal epistemology: The psychology of beliefs about knowledge and knowing (pp. 347–363). Lawrence Erlbaum Associates Publishers.
    Erduran, S., Simon, S., & Osborne, J. (2004). TAPping into argumentation: Developments in the application of Toulmin's argument pattern for studying science discourse. Science education, 88(6), 915-933.
    Eşkin, H., & Ogan-Bekiroğlu, F. (2013). Argumentation as a strategy for conceptual learning of dynamics. Research in Science Education, 43, 1939-1956.
    Havdala, R., & Ashkenazi, G. (2007). Coordination of theory and evidence: Effect of epistemological theories on students' laboratory practice. Journal of Research in Science Teaching: The Official Journal of the National Association for Research in Science Teaching, 44(8), 1134-1159.
    Hofer, B. K. (2001). Personal epistemology research: Implications for learning and teaching. Educational psychology review, 13(4), 353-383.
    Hofer, B. K. (2004). Exploring the dimensions of personal epistemology in differing classroom contexts: Student interpretations during the first year of college. Contemporary educational psychology, 29(2), 129-163.
    Hofer, B. K., & Pintrich, P. R. (1997). The development of epistemological theories: Beliefs about knowledge and knowing and their relation to learning. Review of Educational Research, 67, 88-140.
    Jeong, A., & Lee, J.-M. (2008). The effects of active versus reflective learning style on the processes of critical discourse in computer-supported collaborative argumentation. British Journal of Educational Technology, 39(4), 651-665.
    Jian, Y. C., & Ko, H. W. (2017). Influences of text difficulty and reading ability on learning illustrated science texts for children: An eye movement study. Computers & Education, 113, 263-279.
    Kuhn, D. (1992). Thinking as argument. Harvard Educational Review, 62(2), 155-179.
    Kuhn, D. (1996). Is good thinking scientific thinking. Modes of thought: Explorations in culture and cognition, 261-281.
    Lai, M. L., Tsai, M. J., Yang, F. Y., Hsu, C. Y., Liu, T. C., Lee, S. W. Y., Lee, M. H., Chiou, G. L., Liang, J. C., & Tsai, C. C. (2013). A review of using eye-tracking technology in exploring learning from 2000 to 2012. Educational research review, 10, 90-115.
    Lin, Y.-R. (2019). Student positions and web-based argumentation with the support of the six thinking hats. Computers & Education, 139, 191-206.
    Mason, L., & Scirica, F. (2006). Prediction of students’ argumentation skills about controversial topics by epistemological understanding. Learning and Instruction, 16(5), 492-509.
    National Research Council (NRC). (1996). National science education standards. Washington, DC: National Academy Press
    Newton, P., Driver, R., & Osborne, J. (1999). The place of argumentation in the pedagogy of school science. International Journal of science education, 21(5), 553-576.
    Noroozi, O., Kirschner, P. A., Biemans, H. J., & Mulder, M. (2018). Promoting argumentation competence: Extending from first-to second-order scaffolding through adaptive fading. Educational Psychology Review, 30(1), 153-176.
    Nussbaum, E.M., & Sinatra, G.M. (2003). Argument and conceptual engagement. Contemporary Educational Psychology, 28, 384-395.
    OECD (2018). Preparing our youth for an inclusive and sustainable world. The OECD PISA global competence framework. Paris, France: OECD
    OECD (2019). PISA 2018 Results (Volume I): What Students Know and Can Do, PISA, OECD Publishing, Paris, https://doi.org/10.1787/5f07c754-en.
    Osborne, J. F., Erduran, S., & Simon, S. (2004). Enhancing the quality of argumentation in school science. Journal of Research in Science Teaching, 41(10), 994-1020.
    Perugini, M., & Banse, R. (2007). Personality, implicit self‐concept and automaticity. European Journal of Personality, 21(3), 257-261.
    Rayner, K. (1998). Eye movements in reading and information processing: 20 years of research. Psychological bulletin, 124(3), 372.
    Sadler, P.M., G. Sonnert, Z. Hazari, and R. Tai. 2012. Stability and volatility of STEM career interest in high school: A gender study. Science Education 96(3): 411– 427.
    Sadler, T. D., Chambers, F. W., & Zeidler, D. L. (2004). Student conceptualizations of the nature of science in response to a socioscientific issue. International Journal of Science Education, 26(4), 387-409.
    Sampson, V., Enderle, P., & Grooms, J. (2013). Argumentation in science education. The Science Teacher, 80(5), 30.
    Sanders, M. S., & McCormick, E. J. (1987). Human factors in engineering design (6th ed.). New York: McGraw-Hill.
    Scantlebury, K. 2014. Gender matters: Building on the past, recognizing the present, and looking toward the future. In N. G. Lederman and S. K. Abell (Eds.), Handbook of research on science education: Volume II (187–203). New York: Routledge
    Schommer-Aikins, M., & Hutter, R. (2002). Epistemological beliefs and thinking about everyday controversial issues. The journal of Psychology, 136(1), 5-20.
    Simonneaux, L. (2001). Role-play or debate to promote students’ argumentation and justification on an issue in animal transgenesis. International Journal of Science Education, 23(9), 903-927.
    Solli, A. (2019). Appeals to science: Recirculation of online claims in socioscientific reasoning. Research in Science Education, 51, 983-1013.
    Toulmin, S. E. (1958). The use of argument. Cambridge, UK: Cambridge University Press.
    Tsai, C. C. (1999). “Laboratory exercises help me memorize the scientific truths”: A study of eighth graders' scientific epistemological views and learning in laboratory activities. Science Education, 83(6), 654-674.
    Tsai, C. C., & Liu, S. Y. (2005). Developing a multi-dimensional instrument for assessing students’ epistemological views toward science. International Journal of Science Education, 27(13), 1621–1638.
    Tsai, M. J., Hou, H. T., Lai, M. L., Liu, W. Y., & Yang, F. Y. (2011). Visual attention for solving multiple-choice science problem: An eye-tracking analysis. Computers & Education, 58(1), 375-385.
    Van Essen, D. C., Anderson, C. H., & Felleman, D. J. (1992). Information processing in the primate visual system: an integrated systems perspective. Science, 255(5043), 419-423.
    Wallon, R. C., Jasti, C., Lauren, H. Z. G., & Hug, B. (2018). Implementation of a curriculum-integrated computer game for introducing scientific argumentation. Journal of Science Education and Technology, 27(3), 236-247.
    Williams, J. M. (2022). High School Students’ Nature of Science Understandings and Scientific Argumentation Skills in the Context of Socio-scientific Issues. University of South Dakota.
    Wray, R. & Lewis, M. (1997). Extending literacy: children reading and writing non-fiction. London: Routledge.
    Yang, F. Y. (2017). Examining the reasoning of conflicting science information from the information processing perspective—an eye movement analysis. Journal of Research in Science Teaching, 54(10), 1347-1372.
    Yang, F. Y., Chang, C. C., Chen, L. L., & Chen, Y. C. (2016). Exploring learners’ beliefs about science reading and scientific epistemic beliefs, and their relations with science text understanding. International Journal of Science Education, 38(10), 1591-1606.
    Yang, F. Y., Huang, R. T., & Tsai, I. J. (2016). The effects of epistemic beliefs in science and gender difference on university students’ science-text reading: an eye-tracking study. International Journal of Science and Mathematics Education, 14(3), 473-498.
    Zohar, A., & Nemet, F. (2002). Fostering students’ knowledge and argumentation skills through dilemmas in human genetics. Journal of Research in Science Teaching, 39(1), 35-62.

    無法下載圖示 電子全文延後公開
    2027/07/01
    QR CODE