簡易檢索 / 詳目顯示

研究生: 鄭育雯
Yu-Wen Cheng
論文名稱: The Study of the Kronecker Product
The Study of the Kronecker Product
指導教授: 謝世峰
Shieh, Shih-Feng
學位類別: 碩士
Master
系所名稱: 數學系
Department of Mathematics
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 54
中文關鍵詞: 克羅內克積克羅內克和西爾維斯特方程
英文關鍵詞: Kronecker Product, Kronecker Sum, Sylvester equation
論文種類: 學術論文
相關次數: 點閱:104下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在這篇文章裡,主要是認識Kronecker Product 以及探討Kronecker Product的細節。我們將闡述如何利用Kronecker Product 來解釋某些矩陣性質。
    總體而言,這篇文章可分為三個部分。在文章一開始,我們簡單提到
    Kronecker Product 在科學和工程計算中扮演著極重要的角色。
    在第二部分當中,我們清楚地描述Kronecker Product 的運算而它不能混同於普通一般的矩陣乘法。另外我們也逐步介紹Kronecker Product 的完整性,並嘗試了解Kronecker Product 在矩陣運算中衍生出別於一般的矩陣性質。
    在最後的部分,我們利用Kronecker Product 的性質來證明一些我們感興趣的矩陣方程。我們會發現Kronecker Product 可以幫我們解決一些數學上比較棘手的矩陣運算。

    Abstract ---------------1 Introduction --------------1 Known properties of Kronecker product The Kronecker product ---------------------------2 Linear matrix equations and Kronecker products -----------15 Kronecker sums and the equation AX+BX=C --------------28 Additive and multiplicative commutators and linear preservers --------------39 Application to Kronecker product ---------45 References -----------------53

    [1] Roger A and Charles R. Johnson. Topics In Matrix Analysis. Cambridge Univer-sity Press, New York, 1991.
    [2] Alan J. Laub. Matrix Analysis for Scientists and Engineers, 1948.
    [3] T.-M. Huang, Y.-C. Kuo, and W.-W. Lin, and W. Wang. Computing Spectrum Boundary Eigenvalues for the Three Dimensional Simple Cubic Photonic Crystals around the Center of Brillouin Zone. March 16, 2011.
    [4] Bronson, Richard. Schaum's outline of theory and problems of matrix operations. McGraw-Hill, New York, c1989.
    [5] Lancaster, Peter and Tismenetsky, M. The theory of matrices : with applications. Academic Press, Boston, c1985.
    [6] Meyer, C. D. Matrix analysis and applied linear algebra. Philadelphia, PA : Society for Industrial and Applied Mathematics, c2000.
    [7] Qingxi Hu, Daizhan Cheng. The polynomial solution to the Sylvester matrix equation.
    [8] R.H. Bartels, G.W. Stewart, Solution of the matrix equation AX + XB = C:Algorithm 432, Commun. ACM 15 (1972) 820826.
    [9] Willi-Hans Steeb, Tan Kiat Shi. Matrix calculus and Kronecker product with applications and C++ programs. 1997.
    [10] Brewer, J. W. Kronecker Products and Matrix Calculus in System Theory, IEEE Transactions on Circuits and Systems, 1978, CAS. 25, 772-781.
    [11] W-H Steeb and Y Hardy. Matrix Calculus and Kronecker Product: A Practical Approach to Linear and Multilinear Algebra. Singapore, 2011.
    [12] Karim M. Abadir, Jan R. Magnus. Matrix algebra. Cambridge University Press, 2005.
    [13] Charles F. Van Loan. The ubiquitous Kronecker product. epartment of Computer Science, Cornell University, Ithaca, New York 14853, USA., 26 October 1999.
    [14] H.C. Andrews, J. Kane. Kronecker matrices, computer implementation, and generalized spectra, J. Assoc. Comput. Physics Letters A, 260268, Mach. 17 (1970).
    [15] R.H. Bartels, G.W. Stewart. Solution of the equation AX + XB = C. Comm. ACM.,15 (1972) 820826.
    [16] J.W. Brewer. Kronecker products and matrix calculus in system theory. Circuits Systems, 25 (1978) 772781.

    下載圖示
    QR CODE