研究生: |
鄭育雯 Yu-Wen Cheng |
---|---|
論文名稱: |
The Study of the Kronecker Product The Study of the Kronecker Product |
指導教授: |
謝世峰
Shieh, Shih-Feng |
學位類別: |
碩士 Master |
系所名稱: |
數學系 Department of Mathematics |
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 中文 |
論文頁數: | 54 |
中文關鍵詞: | 克羅內克積 、克羅內克和 、西爾維斯特方程 |
英文關鍵詞: | Kronecker Product, Kronecker Sum, Sylvester equation |
論文種類: | 學術論文 |
相關次數: | 點閱:104 下載:8 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在這篇文章裡,主要是認識Kronecker Product 以及探討Kronecker Product的細節。我們將闡述如何利用Kronecker Product 來解釋某些矩陣性質。
總體而言,這篇文章可分為三個部分。在文章一開始,我們簡單提到
Kronecker Product 在科學和工程計算中扮演著極重要的角色。
在第二部分當中,我們清楚地描述Kronecker Product 的運算而它不能混同於普通一般的矩陣乘法。另外我們也逐步介紹Kronecker Product 的完整性,並嘗試了解Kronecker Product 在矩陣運算中衍生出別於一般的矩陣性質。
在最後的部分,我們利用Kronecker Product 的性質來證明一些我們感興趣的矩陣方程。我們會發現Kronecker Product 可以幫我們解決一些數學上比較棘手的矩陣運算。
[1] Roger A and Charles R. Johnson. Topics In Matrix Analysis. Cambridge Univer-sity Press, New York, 1991.
[2] Alan J. Laub. Matrix Analysis for Scientists and Engineers, 1948.
[3] T.-M. Huang, Y.-C. Kuo, and W.-W. Lin, and W. Wang. Computing Spectrum Boundary Eigenvalues for the Three Dimensional Simple Cubic Photonic Crystals around the Center of Brillouin Zone. March 16, 2011.
[4] Bronson, Richard. Schaum's outline of theory and problems of matrix operations. McGraw-Hill, New York, c1989.
[5] Lancaster, Peter and Tismenetsky, M. The theory of matrices : with applications. Academic Press, Boston, c1985.
[6] Meyer, C. D. Matrix analysis and applied linear algebra. Philadelphia, PA : Society for Industrial and Applied Mathematics, c2000.
[7] Qingxi Hu, Daizhan Cheng. The polynomial solution to the Sylvester matrix equation.
[8] R.H. Bartels, G.W. Stewart, Solution of the matrix equation AX + XB = C:Algorithm 432, Commun. ACM 15 (1972) 820826.
[9] Willi-Hans Steeb, Tan Kiat Shi. Matrix calculus and Kronecker product with applications and C++ programs. 1997.
[10] Brewer, J. W. Kronecker Products and Matrix Calculus in System Theory, IEEE Transactions on Circuits and Systems, 1978, CAS. 25, 772-781.
[11] W-H Steeb and Y Hardy. Matrix Calculus and Kronecker Product: A Practical Approach to Linear and Multilinear Algebra. Singapore, 2011.
[12] Karim M. Abadir, Jan R. Magnus. Matrix algebra. Cambridge University Press, 2005.
[13] Charles F. Van Loan. The ubiquitous Kronecker product. epartment of Computer Science, Cornell University, Ithaca, New York 14853, USA., 26 October 1999.
[14] H.C. Andrews, J. Kane. Kronecker matrices, computer implementation, and generalized spectra, J. Assoc. Comput. Physics Letters A, 260268, Mach. 17 (1970).
[15] R.H. Bartels, G.W. Stewart. Solution of the equation AX + XB = C. Comm. ACM.,15 (1972) 820826.
[16] J.W. Brewer. Kronecker products and matrix calculus in system theory. Circuits Systems, 25 (1978) 772781.