研究生: |
劉紀顯 Liu, Chi-Hsien |
---|---|
論文名稱: |
多取代螺環環己烷結構化合物之1,6/1,4/1,2有機催化連鎖反應 Organocascade Synthesis of Substituted Spirocyclohexane Structure via Organocatalysis of 1,6/Michael/Aldol Reactions |
指導教授: |
陳焜銘
Chen, Kwun-Min |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 中文 |
論文頁數: | 121 |
中文關鍵詞: | 有機催化反應 、有機連鎖反應 、吡唑啉酮 、1,6-加成反應 、1,4-加成反應 、螺環環己烷 |
英文關鍵詞: | Organocatalysis, organocascade reactions, pyrazolone, 1,6- addtion, 1,4- addition, spirocyclohexane |
DOI URL: | https://doi.org/10.6345/NTNU202202672 |
論文種類: | 學術論文 |
相關次數: | 點閱:107 下載:4 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
藉由三單元有機催化連鎖反應,進行多取代螺環環己烷產物之生成。本實驗以乙醯乙酸酯與吡唑啉酮雙烯,加入20 mol%苯胺硫尿素氫鍵催化劑,並添加20 mol%的 1,4-二氮雜二環[2,2,2]辛烷,在二乙基醚為溶劑及常溫條件下,進行1,6-/Michael/aldol 三步驟連鎖反應,得到多取代螺環環己烷,此反應具有中等的產率(24-66%)及高非鏡像選擇性(up to > 20:1 dr);透過單晶繞射X-ray 分析,獲得產物相對立體化學組態。本實驗亦透過高級量反應,確定此反應穩定性,在大量合成產物的條件下,產率與非鏡像選擇性皆沒有差異。本實驗亦選定不同親核試劑,確定此反應對羰基酯類親核試劑具有較顯著的反應性;在反應機構部分,確定此反應機構在1,6-/Michael反應步驟,具有顯著誘導效應;本實驗成功以三步驟連鎖反應,生成6個鏡像立體中心,並具有多取代基結構,未來將繼續發展鏡像選擇性,並希望此新穎有機催化連鎖反應,可應用在藥物合成、染料開發,與有機合成領域。
A novel 3-component organocatalytic cascade reaction to form a multisubstituted spirocyclohexane product was presented. This reaction occur with 5-methyl-2-phenyl-4-(-3-phenylallylidene)-2,4-dihydro-3H-pyrazol-3-one and β-keto esters using a catalytic amount of benzyl amine derived thiourea hydrogen-bond catalyst (20 mol%) and DABCO (20 mol%) in diethyl ether at ambient temperature, to promote the 3-step 1,6-/Michael/aldol cascade process with medium chemical yield and excellent diastereoselectivities (up to > 20:1 dr). The structure of the product is ensured by using single crystal X-ray analysis and to realize the relative stereochemistry. This reaction is treated in high-scale to promise the steability of yield and diastereoseletivity. Besides, with different nucleophiles substrate scope, this study find that β-keto esters are the suitable nucleophile of this electrophile. About the mechanism, it's considered that 1,6-addtion will trigger the Michael addition in the cascade reaction. This reaction successfully synthesize the multisubstituted spirocyclohexane product via a 3-step cascade reaction, constructed 6 chiral centers, and the prodcut bears multiple functional groups. To improve the enantioselectivity is the study, and hope this creative organocascade reaction shall be applied in pharmaceutical methodology, dye development, and organosynthesis in the future.
1.葉名倉,化學史,2005, 高瞻自然科學教學資源平台:http://highscope.ch.ntu.edu.tw/wordpress/?p=3254
2.形上學, 亞里士多德著;苗力田譯,北京:中國人民大學出版社,2003. ISBN 7-300-05116-2.
3.李俊毅,史上十大美麗化學實驗,2009, 高瞻自然科學教學資源平台:http://highscope.ch.ntu.edu.tw/wordpress/?p=3264
4.J. Loschmidt, Chemische Studien (Vienna, Austria-Hungary: Carl Gerold's Sohn, 1861),pp. 30, 65.
5.Kekulé, F. A. (1866). "Untersuchungen über aromatische Verbindungen (Investigations of aromatic compounds)". Liebigs Annalen der Chemie und Pharmacie.137(2): 129–36
6.M. Freemantle, Chem. Eng. News, 2003, 81 (34), 27
7."Chemistry of amino acids and protein structure", Khan Acadamy , https://www.khanacademy.org/test-prep/mcat/biomolecules/amino-acids-and-proteins1/a/chemistry-of-amino-acids-and-protein-structure
8.Berkessel, A.; Gröger, H. Asymmetric Organocatalysis: From Biomimetic Concepts to Applications in Asymmetric Synthesis; Wiley-VCH: Weinheim, 2005.
9.B. List, R. A. Lerner, and C. F. Barbas III, J. Am. Chem. Soc. 2000, 122, 2395
10.H. Jiang, £, Albrechtab, and K. A. Jørgensen, Chem. Sci., 2013, 4, 2287
11.W.-D. Chu, L.-F. Zhang, X. Bao, X.-H. Zhao, C. Zeng, J.-Y. Du, G.-B. Zhang, F.-X. Wang, X.-Y. Ma, and C.-A. Fan, Angew. Chem. Int. Ed. 2013, 52, 9229
12.維基百科,奎寧:https://en.wikipedia.org/wiki/Quinine
13.J-L. Han and C-H. Chang, Chem. Commun., 2016, 52, 2322
14.X. Bao, B. Wang, L. Cui, G. Zhu, Y. He, J. Qu, and Y.Song, Org. Lett. 2015, 17, 5168
15.P. J. S. Pauwels, J. Am. Chem. Soc. 1967, 89, 580
16.A. Kimata, H. Nakagawa, R. Ohyama, T. Fukuuchi, S. Ohta, T. Suzuki, and N. Miyata, J. Med. Chem. 2007, 50, 5053
17.N. Uramaru, H. Shigematsu, A. Toda, R. Eyanagi, S. Kitamura, and S. Ohta, J. Med. Chem. 2010, 53, 8727
18.A. Michael, J. Prakt. Chem. 1887, 35, 349
19.S. Mosse´ ,and A. Alexakis, Org. Lett. 2005, 7, 4361
20.J. Wang, H. Li, W.-H. Duan, L. Zu, and W. Wang, Org. Lett. 2005, 7, 4713
21.T. Okino, Y. Hoashi, and Y. Takemoto, J. Am. Chem. Soc. 2003, 125, 12672
22.O. Basle´, W. Raimondi, M. del M. S. Duque, D. Bonne, T. Constantieux, and J. Rodriguez, Org. Lett. ,2010, 12, 5246
23.G. Bertuzzi, A. Sinisi, D. Pecorari, L. Caruana, A. Mazzanti, L. Bernardi, and M. Fochi, Org. Lett., 2017, 19 , 834
24.N. Parekh, J. Thomas, J. John, R. Kusurkar, W. M. De Borggraeve, and W. Dehaen, J. Org. Chem. 2014, 79, 5338
25.N. Kumarswamyreddy, and V. Kesavan, Org. Lett. 2016, 18, 1354
26.P. H. Poulsen, K. S. Feu, B. M. Paz, F. Jensen, and K. A. Jorgensen, Angew. Chem. Int. Ed. 2015, 54, 8203
27.L. Bernardi, J. Lo´pez-Cantarero, B. Niess, and K. A. Jørgensen, J. Am. Chem. Soc. 2007, 129, 5772
28.B. T. Ramanjaneyulu, S. Mahesh, and R. V. Anand, Org. Lett. 2015, 17, 3952
29.K. Zhao, Y. Zhi, A. Wang, and D. Enders, ACS Catal. 2016, 6, 657
30.X. Li, X. Xu, W. Wei, A. Lin, and Hequan Yao, J. Org. Chem. 2015, 80, 11123
31.L. Ge, X. Lu, C. Cheng, J. Chen, W. Cao, X. Wu, and G. Zhao, J. Org. Chem. 2016, 81, 9315
32.X. Li, X. Xu, W. Wei, A. Lin, and H. Yao, Org. Lett. 2016, 18, 428
33.N. Molleti, and J.-Y. Kang, Org. Lett. 2017, 19, 958
34.Y.-W. Huang, and A. J. Frontier, Org. Lett. 2016, 18, 4896
35.P. S. Baran , T. J. Maimone1, and J. M. Richter, Nature 2007, 446, 404.
36.Y. Huang, A. M. Walji, C. H. Larsen, and D. W. C. MacMillan, J. Am. Chem. Soc. 2005, 127, 15051
37.S. Roy, and K. Chen, Org. Lett. 2012, 14, 2496
38.M. Blümel, P.j Chauhan, R. Hahn, G. Raabe, and D. Enders, Org. Lett. 2014, 16, 6012
39.A. Raja, B.-C. Hong, J.-H. Liao, and G.-H. Lee, Org. Lett. 2016, 18, 1760
40.F.-J. Chang, R. Gurubrahamam, and K. Chen, Adv. Synth. Catal. 2017, 359, 1277
41.Knorr, Justus Liebigs Annalen der Chemie, 1887, 238, 183
42.P. Chauhan, S. Mahajan, C. C. J. Loh, G. Raabe, and D. Enders, Org. Lett. 2014, 16, 2954