研究生: |
翁康鈞 WENG, Kang-Jun |
---|---|
論文名稱: |
基於費雪-博美斯特函數以及自然殘留函數建構出的非線性互補性問題函數的性質 Properties of some NCP-functions based on the Fischer-Burmeister function and the Natural-Residual function |
指導教授: |
陳界山
Chen, Jein-Shan |
學位類別: |
碩士 Master |
系所名稱: |
數學系 Department of Mathematics |
論文出版年: | 2015 |
畢業學年度: | 103 |
語文別: | 英文 |
論文頁數: | 15 |
中文關鍵詞: | 非線性互補問題 、費雪-博美斯特函數 、自然殘留函數 、互補性 |
英文關鍵詞: | NCP, Fischer-Burmeister, Natural-Residual, complementarity |
論文種類: | 學術論文 |
相關次數: | 點閱:156 下載:16 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
非線性互補問題函數在非線性互補性問題裡扮演很重要的角色。在本篇文章中,我們討論幾個非線性互補性問題函數,其中包含一般化的 費雪-博美斯特函數以及一般化的 自然殘留函數。我們企圖提出幾個關於這些函數的基本性質。
It is well known that NCP-functions play an important role in nonlinear complementarity problem (NCP). In this paper, we study several NCP-functions including the generalized Fisher-Burmeister function, and the generalized Natural-Residual function. We attempt to give
some basic properties for these NCP-functions.
[1] J.-S. Chen, The semismooth-related properties of a merit function and a descent method for the nonlinear complementarity problem, Journal of Global Optimization,
36(2006), 565-580.
[2] J. S. Chen, On some NCP-functions based on the generalized Fischer-Burmeister function, Asia-Pacic Journal of Operational Research, 24(2007), 401-420.12
[3] J.-S. Chen, H.-T. Gao and S. Pan, A R-linearly convergent derivative-free algorithm for the NCPs based on the generalized Fischer-Burmeister merit function,
Journal of Computational and Applied Mathematics, 232(2009), 455-471.
[4] J.-S. Chen, Z.-H. Huang, and C.-Y. She, A new class of penalized NCP-functions and its properties, Computational Optimization and Applications, 50(2011),
49-73.
[5] J.-S. Chen, C.-H. Ko, and S.-H. Pan, A neural network based on generalized Fischer-Burmeister function for nonlinear complementarity problems, Information
Sciences, 180(2010), 697-711.
[6] J.-S. Chen, C.-H. Ko, and X.-R. Wu, What is the generalization of natural residual function for NCP, to appear in Pacic Journal of Optimization, January,
2016.
[7] J.-S. Chen and S. Pan, A family of NCP-functions and a descent method for the nonlinear complementarity problem, Computational Optimization and Applications,
40(2008), 389-404.
[8] J.-S. Chen, S.-H. Pan, and T.-C. Lin, A smoothing Newton method based on the generalized Fischer-Burmeister function for MCPs, Nonlinear Analysis: Theory,
Methods and Applications, 72(2010), 3739-3758.
[9] J.-S. Chen, S.-H. Pan, and C.-Y. Yang, Numerical comparison of two eective methods for mixed complementarity problems, Journal of Computational and Applied Mathematics, 234(2010), 667-683.
[10] J.-S. Chen, D. F. Sun, and J. Sun, The SC1 property of the squared norm of the SOC Fischer-Burmeister function, Operations Research Letters, vol. 36(2008),
385-392.
[11] Peng-Fei Ma, Jein-Shan Chen, Chien-Hao Huang, Chun-Hsu Ko, Discovery of new complementarity functions for NCP and SOCCP
[12] Yu-Lin Chang, Jein-Shan Chen, Ching-Yu Yang, Symmetrization of generalized natural residual function for NCP, Operations Research Letters, vol. 43(2015),
354-358.
[13] F. Facchinei and J. Soares, A new merit function for nonlinear complementarity problems and a related algorithm, SIAM Journal on Optimization, 7(1997), 225-247.
[14] A. Fischer, A special Newton-type optimization methods, Optimization, 24(1992),269-284.13
[15] A. Fischer, Solution of the monotone complementarity problem with locally Lipschitzian functions, Mathematical Programming, 76(1997), 513-532.
[16] A. Galantai, Properties and construction of NCP functions, Computational Optimization and Applications, 52(2012), 805-824.
[17] C. Geiger and C. Kanzow, On the resolution of monotone complementarity problems, Computational Optimization and Applications, 5(1996), 155-173.
[18] P. T. Harker and J.-S. Pang, Finite dimensional variational inequality and nonlinear complementarity problem: a survey of theory, algorithms and applications,
Mathematical Programming, 48(1990), 161-220.
[19] C. Kanzow, Nonlinear complementarity as nconstrained optimization, Journal of Optimization Theory and Applications, 88(1996), 139-155.
[20] C. Kanzow, N. Yamashita, and M. Fukushima, New NCP-functions and their properties, Journal of Optimization Theory and Applications, 94(1997), 115-135.
[21] O. L. Mangasarian, Equivalence of the Complementarity Problem to a System of Nonlinear Equations, SIAM Journal on Applied Mathematics, 31(1976), 89-92.
[22] J.-S. Pang, Newton's Method for B-dierentiable Equations, Mathematics of Operations Research, 15(1990), 311-341.
[23] D. Sun and L. Qi, On NCP-functions, Computational Optimization and Applications, 13(1999), 201-220.
[24] H.-Y. Tsai and J.-S. Chen, Geometric views of the generalized Fischer-Burmeister function and its induced merit function, Applied Mathematics and Computation, 237(2014), 31-59, 2014.
[25] N. Yamashita and M. Fukushima, On stationary points of the implict Lagrangian for nonlinear complementarity problems, Journal of Optimization Theory
and Applications, 84(1995), 653-663.
[26] Ferris, MC and J-S Pang, Engineering and economic applications of complementarity problems, SIAM Review, 39(1997), 669-713.
[27] J-S. Pang, Complementarity problems.Handbook of Global Optimization, R Horst and P Pardalos (eds.), MA: Kluwer Academic Publishers, 271-338, 1994.
[28] J.-S. Chen, S.-H. Pan, and T.-C. Lin, A smoothing Newton method based on the generalized Fischer-Burmeister function for MCPs (eds.), Nonlinear Analysis:Theory, Methods and Applications, vol. 72, no. 9-10, pp. 3739-3758, 2010.