簡易檢索 / 詳目顯示

研究生: 林怡美
Yi-Mei Lin
論文名稱: 恆春地區晚更新世二枚貝類殼體穩定同位素及化學元素訊號所指示之環境變遷
Late Pleistocene Environmental ChangeIndicated by Stable Isotope and Element Compositions of Bivalve Shells from Hengchun Area
指導教授: 米泓生
Mii, Horng-Sheng
學位類別: 碩士
Master
系所名稱: 地球科學系
Department of Earth Sciences
論文出版年: 2002
畢業學年度: 90
語文別: 中文
論文頁數: 68
中文關鍵詞: 晚更新世二枚貝穩定同位素化學元素恆春地區環境變遷
英文關鍵詞: Late Pleistocene, Bivalve Shells, Stable Isotope, Element, Hengchun Area, Environmental Change
論文種類: 學術論文
相關次數: 點閱:201下載:75
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究分析了採自台灣西南沿海現生種的Anadara granosa(M1、M2)以及恆春晚更新世地層─四溝層上部 (FU)、下部 (FL) 的A. granosa化石,共四個標本的穩定碳、氧同位素及化學元素的組成,來探討年際間的環境變化。
    現生標本的δ18O值多落於利用同位素平衡方程式計算出霰石之氧同位素應有的數值範圍(-2.6~-0.3‰),表示此種貝類殼體與水體氧同位素數值大致可達成同位素平衡。化石標本的主要組成礦物仍為霰石,礦物結晶構造清晰可見,表示未受到成岩作用影響,因此其同位素訊號應能夠代表四溝層沉積時的環境訊號。所有標本的氧同位素數值變化,在貝類生長早期振幅大;後期振幅小,其原因可能是貝類達到成熟生殖期,將部分能量消耗在生殖,導致殼體對於環境訊號的紀錄有所缺失,故本研究未將貝類達成熟生殖期後之數據用在古環境重建之討論中。FU、FL的碳、氧同位素呈現線性正相關,顯示其在四溝層沉積時的生長環境,潟湖水體受到顯著不同程度淡水與海水混合的影響。
    化石的δ18O值較現生種的δ18O值整體約高1.5‰,主要是由於冰川效應所影響。年際間氧同位素數值變化扣除最大的溫度效應部份,淡水注入影響水體氧同位素變化量在四溝層下部平均有1.4‰,而在上部四溝層所造成的變化量減少變為1.1‰,表示下部四溝層至上部四溝層沉積過程中,年淡水注入量有些許減少的變化。
    Mg/Ca值在二枚貝類 A. granosa 霰石殼體中與δ18O值部份成反相變化,故可能也是溫度的函數。新陳代謝是影響殼體中Sr/Ca含量最主要的因素,Sr/Ca值在各標本中都呈現逐漸降低的趨勢,顯示貝殼成長過程中,新陳代謝速率有逐漸減緩的現象。A. granosa殼體Ba/Ca值應表示水體中營養鹽的多寡,且與Sr/Ca值呈現同相變化,顯示出該貝類的新陳代謝速率可能亦與營養鹽含量有關。
    由於四溝層上下層位的δ18O值並無顯著的差異,可推斷當時海退現象應由陸地隆升所造成,並非冰川效應所導致。而下部四溝層的δ13C值較上部四溝層小1.0‰,Ba/Ca含量約大13μmole/mole,顯示陸地隆升使得環境從潟湖環境變化成河口環境,導致營養鹽減少,而間接影響水體中溶解無機碳的同位素數值。若假設當時海水的δ18O值為1.5‰,則當時冬季的海水溫度約為24℃,與現今溫度並無太大差異。

    We have analyzed the isotope and element compositions of two modern and two Late Pleistocene Anadara granosa shells to quantitatively characterize the paleoenvironmental change in Szekou Formation, Hengchun area. The δ18O values of modern shells are in good agreement with those calculated values based on available seawater δ18O values and temperature ranges, thus reach apparently isotopic equilibrium. Fossil shells, retaining the originally aragonitic mineralogy, indicate that these shells are not altered by diagenesis.
    Excluding data from the period of sexual maturity, average δ18O value of fossil A. granosa is 1.5‰ greater than that of modern species. This difference is probably due to global glaciation effect and is consistent with previous studies. Both fossil specimens show positive linear correlation between δ18O and δ13C values whereas this relationship is not seen for modern samples. This is probably because these fossil shells lived in a lagoon environment whereas modern samples lived in an estuary area where is more opened to seawater. Therefore, samples from Szekou Formation show more significant fresh water-seawater mixing signals than modern ones. Excluding the possible annual temperature variation, the excess -1.4‰ (Lower Szekou Fm.) and -1.1‰ (Upper Szekou Fm.) indicate that the extent of riverine input at Lower Szekou Formation (FL) was little bit greater than that of Upper Szekou Formation (FU).
    Episodic minima of Mg/Ca ratios are generally coincide to δ18O maxima. Thus, Mg/Ca ratio may be also varied as a function of temperature in the aragonitic shells. Because the Sr/Ca ratios decrease with tardy metabolism during growth process, metabolic activity of A. granosa should be the major factor controlling Sr/Ca ratio. Ba/Ca ratio is a indicator of nutrition. Sr/Ca and Ba/Ca data show a broadly positively covariant trend demonstrate that metabolism of A. granosa is also related to nutrition.
    There is no significant difference in δ18O values between FL and FU. Therefore, the regression occurred from FL to FU was most likely caused by land uplift instead of global ice volume change. Average δ13C value of FL is 1‰ less than that of FU, whereas Ba/Ca ratio of FL is 13μmol/mol greater than that of FU. Land uplift may have changed Szekou depositional environment from lagoon to estuary and caused decrease in nutrient supply. Increase in δ13C of dissolve inorganic carbon of water from FL to FU may be caused by reduced relative biodiversity and need to be further studied. Assuming the δ18O of seawater was 1.5‰, the winter seawater temperature of studied area was about 24℃. The calculated Late Pleistocene seawater temperature is comparable to that of modern observations.

    Abstract………………………………………………………………V 摘要…………………………………………………………………VII 誌謝…………………………………………………………………IX 目錄……………………………………………………………………X 圖目…………………………………………………………………XIII 表目…………………………………………………………………XVII 第一章、緒論…………………………………………………………1 1.1前言……………………………………………………1 1.2前人研究………………………………………………5 1.2.1二枚貝類及其應用…………………………………5 1.2.2恆春西台地四溝層的研究…………………………8 1.3研究目的………………………………………………10 第二章、研究區域及標本……………………………………………11 2.1西南海域……………………………………………11 2.2四溝層地質背景……………………………………11 2.3貝類之生活習性……………………………………18 第三章、研究方法……………………………………………………20 3.1貝類切片標本製作及X-ray分析…………………20 3.2氣體比值型質譜儀(IRMS)分析……………………20 3.3電感耦合電漿源質譜儀(ICP-MS)分析……………22 第四章、結果…………………………………………………………23 4.1切片標本觀察及組成………………………………23 4.2穩定碳氧同位素……………………………………26 4.3化學元素……………………………………………32 第五章、討論…………………………………………………………35 5.1穩定碳氧同位素……………………………………35 5.1.1現生標本的生理及環境訊號…………………35 5.1.2化石標本紀錄…………………………………37 5.2微量元素……………………………………………43 5.2.1鎂元素…………………………………………43 5.2.2鋇元素…………………………………………44 5.2.3鍶元素…………………………………………45 5.3恆春西台地晚更新世環境變遷……………………48 第六章、結論…………………………………………………………51 參考文獻………………………………………………………………52 附錄一、穩定同位素分析之數值……………………………………61 附錄二、化學元素分析之數值………………………………………66 作者簡介………………………………………………………………68 圖目 圖 頁碼 圖1.1 雙殼綱雙柱類殼層圖,A─縱切面;B─橫切面。(取自 戴等人,1995) ………………………………………………6 圖1.2 二枚貝類殼體分泌示意圖(修改自戴等人,1995) …………6 圖1.3 根據貝類化石動物群集所建立之四溝層環境變化(Chen et al., 1991)。FU表示上部標本採集層位,FL表示下部標本採集層位(EV:Eucrassatella-Venus群集、CF:Conus-Fissidentalium群集、M:Modiolus群集、CS:Cultellus-Solecurtus群集、PT:Pinna-Turritella群集、C:Crassostrea群集、BC群集:Batillaria-Cyclina群 集)。……………………………………………………………9 圖2.1.1 台灣海峽春、夏季氧同位素分布圖(修改自張,2000) …12 圖2.1.2 台灣海峽秋、冬季氧同位素分布圖(修改自張,2000) …13 圖2.2 台灣附近海域水深二十公尺夏季、冬季平均溫度。星號表示現生標本採集地點。(取自國科會海洋科學研究中 心網頁) ……………………………………………………14 圖2.3 恆春西台地地質圖。A─全區地質圖,B─區域放大地質圖,C─剖面圖。箭頭表示化石標本採集地點(FU=上部 四溝層,FL=下部四溝層)。(修改自Chen et al., 1991) …15 圖2.4 恆春西台地地層層序及接觸關係圖,曲折黑線區域代表 不整合接觸。(取自吳與陳,1990) …………………………16 圖2.5 A. granosa 的型態。A─外部觀;B─內部觀;C─側面 觀;D─韌帶方向觀。………………………………………19 圖3.1 A.反射光顯微鏡下所拍攝之貝殼切片標本,明顯可見生長紋。B.與A為同一標本,细線條表示生長紋及套膜線,黑色圓點及短線表示微取樣之位置,主要在中殼層 沿生長方向取樣。……………………………………………21 圖4.1 A.化石標本粉末經X光繞射分析結果。B.方解石及霰石 標本X光繞射之圖形。………………………………………24 圖4.2 在透射光顯微鏡下觀察到的平板結構的內殼層(EN)及柱 纖結構的中殼層(ME)。……………………………………25 圖4.3 現生A. granosa標本(M1、M2)及化石A. granosa標本(FL、FU)殼體碳、氧同位素記錄(平均值的線段長度為 兩個標準偏差)。……………………………………………27 圖4.4 現生標本左右殼同位素紀錄。結果顯示左右殼同位素紀 錄大致相符。…………………………………………………28 圖4.5 M1標本碳、氧同位素及微量元素含量隨生長的變化。直線顯示Mg/Ca的區域低值可對應氧同位素區域高值。 δ18O及δ13C座標軸低值向上。……………………………29 圖4.6 FU標本碳、氧同位素及微量元素含量隨生長的變化。直線顯示Mg/Ca的區域低值可對應氧同位素區域高值。 δ18O及δ13C座標軸低值向上。……………………………30 圖4.7 FL標本碳、氧同位素及微量元素含量隨生長的變化。直線顯示Mg/Ca的區域低值可對應氧同位素區域高值。 δ18O及δ13C座標軸低值向上。……………………………31 圖4.8 M1、FU、FL中Sr/Ca含量對應Ba/Ca含量作圖,兩者 間呈現正相關的分佈。………………………………………34 圖5.1 現生標本M1、M2的氧同位素數值沿生長方向變化。M1在3.8cm後,M2在4.0cm後進入成熟生殖期。(δ18O 及δ13C座標軸低值向上) …………………………………36 圖5.2現生(M1、M2)、上部四溝層(FU)、下部四溝層(FL)及四溝層錐螺(未發表資料)、現生錐螺(彭和汪,1990)碳、氧同位素數值。方框及環境解釋取自彭等人 (1990)。………………………………………………………38 圖5.3 化石標本FU、FL的同位素紀錄。FU在6.6cm後,FL在7.2cm後進入成熟生殖期。氧同位素紀錄扣除最大的溫度效應1.1‰,為淡水注入的影響,下部標本受淡水影響平均有1.4‰,上部標本受淡水影響平均有1.1‰。 (δ18O及δ13C座標軸低值向上)………………………………41 圖5.4晚更新世恆春西台地古環境重建圖(取自Huang, 1988)。…45 圖5.5晚更新世恆春四溝層下部古環境重建圖(修改自Chen et al., 1991, Huang, 1988, Wang et al., 1991。動物群集說明 請見圖1.3)。…………………………………………………49 圖5.6晚更新世恆春四溝層上部古環境重建圖(修改自Chen et al., 1991, Huang, 1988, Wang et al., 1991。動物群集說明 請見圖1.3)。…………………………………………………49 表目 表4.1 各個標本的形貌及野外資料…………………………………23 表4.2 Mg/Ca、Sr/Ca、Ba/Ca在各個標本中的含量統計表………32 表5.1 FU、F L碳、氧同位素相關性統計資料…………………37 表5.2 FU、FL碳、氧同位素差異統計資料………………………39 表5.3化石標本與線生標本碳、氧同位素差異統計資料…………40 表5.4 Sr/Ca在珊瑚、貝類殼體及無機過程生成的霰石中的DMe 值(取自Stecher et al., 1996) ………………………………47

    六角兵吉、牧山鶴彥,1934,高雄州恆春油田調查報告,第660號,台灣總督府殖產局出版。
    王明惠,1985,恆春西台地之超微化石研究:經濟部中央地質調查所年報73年度,49-56頁。
    王家慶,1984,恆春西臺地的地質與貝類化石研究:經濟部中央地質調查所年報72年度,57-75頁。
    石同生,1991,電子自旋共振定年法在貝類化石上的研究與應用:國立台灣大學碩士論文,共計177頁。
    石崎和彥,1942,西恆春臺地附近地質學的觀察:台灣地學記事,第十三卷,第2-3期,45-64頁。
    何雲達,1995,養殖漁業─貝類養殖(血蚶),於洪筆鋒編輯:臺灣農家要覽─漁業篇,農業委員會臺灣農家要覽增修訂再版策劃委員會編著,台北市豐年社,260-263頁。
    吳樂群、陳華玟,1990,臺灣南部恆春西臺地北段晩更新世地層之沉積層序:經濟部中央地質調查所彙刊,第六號,13-50頁。
    許中民,1986,台灣南端恆春半島第四紀後期構造運動之研究:國立台灣大學博士論文,共計176頁。
    陳佩芬、汪中和、何麗如,1990台灣的氫氧同位素天水線:地質,10卷,21-27頁。
    張志成,2000,台灣海峽海水氧同位素組成之時空分佈變化:國立中山大學碩士論文,共計114頁。
    彭宗仁、汪中和,1990,現生錐螺與臺南層錐螺化石碳氧同位素組成之初步比較:中國地質學會會刊,33卷,4期,289-301頁。
    彭宗仁、汪中和、陳鎮東,1990,苗栗白沙屯過港貝化石層內軟體動物化石之碳氧同位素研究:經濟部中央地質調查所特刊,第四號,307-322頁。
    國家海洋科學研究中心海洋資料庫,http://duck2.oc.ntu.edu.tw/
    鄭潁敏、黃奇瑜,1975,西恆春臺地之生物地層學研究:國立台灣大學理學院地質學系研究報告,第18期,49-59頁。
    鄭穎敏、黃奇瑜、劉平妹,1986,墾丁國家公園及鄰近地區地質古生物調查:墾丁國家公園保育研究報告,第26號,共計215頁。
    戴永定、吳浩若、傅瑜、張維、王家珍、陽萬容、馮儒林、杜乃正著,1995,生物礦物學,石油工業出版社,共計580頁。
    Andreasson, F.P., Schmitz, B., and Jonsson, E., 1999, Surface-water seasonality from stable isotope profiles of Littorina littorea shells: Implications for paleoenvironmental re-constructions of coastal areas: Palaios, v. 14, p. 273–281.
    Anderson, T. F., and Arthur, M. A., 1983, Stable isotopes of oxygen and carbon and their application to sedimentologic and paleoenvironmental problems, in Arthur, M. A., Anderson, T. F., Kaplan, I. R., Veizer, J. and Land, L. S., eds, Stable isotopes in sedimentary geology: SEPM Short Course, no. 10, p. 1-151.
    Bathurst, R. G. C., 1975, Carbonate sediments and their diagenesis: Elsevier, Amsterdam, 2nd ed., 658 p.
    Beck, J. W., Edward, R. L., Ito, E., Taylor, F. W., Recy, J., Rougerie, F., Joannot, P., and Henin, C., 1992, Sea-surface temperature from coral skeleton Sr/Ca ratios: Science, v. 257, p. 644-647.
    Bemis, B. E., and Geary, D. H., 1996, The Usefulness of Bivalve Stable Isotope Profiles as Environmental Indicators: Data from the Eastern Pacific Ocean and the Southern Caribbean Sea: Palaios, v. 11, p. 328-339.
    Brand, U., 1989, Aragonite-calcite transformation based on Pennsylvanian mollusks: Geological Society of America Bulletin, v. 101, p. 377-390.
    Brand, U., and Morrison, J. O., 1987, Biogeochemistry of fossil marine invertebrates: Geoscience Canada, v. 14, p. 85-107.
    Broecker, W. S., and Peng, T. H., 1982, Tracers in the Sea: Palisades, New York, Lamont Doherty Earth Observatory, 690 p.
    Buchardt, B., 1977, Oxygen isotope rations from shell material from the Danish Middle Paleocene (Selandian) deposits and their interpretation as paleotemperature indicators: Palaeogeography, Palaeoclimatology, Palaeoecology, Vol. 22, p.209-230.
    Buchardt, B., and Fritz, P., 1980, Environmental isotope as environmental and climatological indicators: in Handbook of Environmental Isotope Geochemistry, v. 1, p. 473-504.
    Chen, H. W., Wu, L. C., Huang, C. Y., and Koichiro, M., 1991, Late Pleistocene molluscan paleoecology of lagoon deposits of the Szekou Formation, Hengchun Peninsula, Southern Taiwan:Proceedings of the Geological Society of China, v. 34, No. 1, p. 57-87.
    Chen, P.-Y., 1977, Table of Key Lines in X-ray Powder Diffraction Patterns of Minerals in Clays and Associated Rocks: Indiana University, Indiana Geological Survey, Occasional Paper 21, 67p.
    Corfield, R. M., 1995, An introduction to the techniques, limitations and landmarks of carbonate oxygen isotope palaeothermometry: Geological Society Special Publications, No. 83, p. 27-42.
    Dehorirs, F., Chesselet, R., and Jedwab, J., 1980, Discrete suspended particles of barite and the barium cycle in the open ocean: Earth and Planetary Science Letters, v. 49, p. 528-550.
    Dehorirs, F., Lambert, C. E., Chesselet, R., and Risler, N., 1987, The biological production of marine suspended barite and the barium cycle in the Western Mediterranean Ocean: Biogeochemistry, v. 4, p. 119-139.
    Dehorirs, F., Stroobants, N., and Goeyens, L., 1991, Suspended barite as a tracer of biological activity in the Southern Ocean: Marine Chemistry, v. 63, p. 445A-457A.
    Dettman, D. L., Reische, A. K., and Lohmann, K. C., 1999, Controls on the stable composition of seasonal growth bands in aragonitic fresh-water bivalves (unionidae): Geochimica et Cosmochimica Acta, v. 63, p. 1049-1057.
    Dodd, J. R., 1965, Environmental control of strontium and magnesium in Mytilus: Geochimca et Cosmochimica Acta, v. 29, p. 385-398.
    Dodd, J.R., and Crisp, E.L., 1982, Non-linear variation with salinity of Sr/Ca and Mg/Ca in water and aragonitic bivalve shells and implications for paleosalinity studies: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 38, p. 45–56.
    Dymond, J., Suess, E., and Lyle, M., 1992, Barium in deep-sea sediment: A geochemical proxy for paleoproductivity: Paleoceanography, v. 7, p. 163-181.
    Epstein, S., Buchsbaum, R., Lowenstam, H. A., and Urey, H. C., 1951, Carbonate-water isotopic temperature scale: Geological Society of America Bulletin, v. 62, p. 417-425.
    Faure, G., 1991, Principles and Application of Inorganic Geochemistry: McMillan Publishing Company, New York, 626 p.
    Fuge, R., Palmer, T. J., Pearce, N. J. G., and Perkins, W. T., 1993, Minor and trace element chemistry of modern shells: a laser ablation inductively coupled plasma mass spectrometry study: Applied Geochemistry, Supplementary Issue 2, p. 111-116.
    Grootes, P. M., Stuiver, M. White, J. W. C., Johnsen, S., and Jouzel, J., 1993, Comparison of oxygen isotope records from the GISP2 and GRIP Greenland ice cores: Nature, v. 366, p. 552-554.
    Grossman, E. L., and Ku T-L., 1986, Oxygen and carbon isotope fractionation in biogenic aragonite: temperature effects: Chemical Geology. (Isotope Geosciences Section) v. 59, p. 59–74.
    Hallam, A., and Price, N. B., 1968, Environmental and biochemical control of strontium in shells of Cardium edule: Geochimca et Cosmochimica Acta, v. 39, p. 319-328.
    Hanor, J. S., and Chan, L. H., 1977, Non-conservative behavior of barium during mixing of Mississippi River and Gulf of Mexico water: Earth and Planetary Science Letters, v. 37, p. 242-250.
    Hays, P. D., and Grossman, E. L., 1991, Oxygen isotope in meteoric calcite cements as indicators of continental climate: Geology, v. 19, p. 441-444.
    Hendry, J. P., Perkins, W. T., and Bane, T., 2001, Short-term environmental change in a Jurassic lagoon deduced from geochemical trends in aragonite bivalve shells: Geological Society of America Bulletin, v. 113, p.790-798.
    Hoefs, J., 1987, Stable Isotope Geochemistry: 3rd edition, Springer-Verlag, Berlin, 241 p.
    Huang, C. Y., 1988, Foraminiferal paleoecology of a late Pleistocene lagoonal sequence of the Szekou formation in the Hengchun Peninsula, Southern Taiwan: Proceedings of the geological society of China, v. 33, p. 181-206.
    Hudson, J. D., and Anderson, T. F., 1989, Ocean temperature and isotopic compositions through time: Transactions of the Royal Society of Edinburgh: Earth Science, v. 80, p. 183-192.
    Jacoby, G. C., D’Arrigo, R. D., and Davaajamts, T., 1996, Mongolian tree rings and 20th-century warming: Science, v. 273, p. 771-773.
    Jones, D. S., 1985, Growth increments and geochemical variations in the molluscan shell: Mollusks; Studies in Geology, v. 13, p. 72-87.
    Jones, D. S., and Quitmyer, I.R., 1996, Marking time with bivalve shells: Oxygen isotopes and season of annual increment formation: Palaios, v. 11, p. 340–346.
    Katz, A., 1973, The interaction of magnesium with calcite during crystal growth at 25-90℃ and one atmosphere: Geochimica et Cosmochimica Acta, v.37, p. 1563-1586.
    Keith, M. L., Anderson, G. M., and Eichler, E., 1964, Carbon and oxygen isotopic composition of mollusk shells from marine and fresh-water environments: Geochimica et Cosmochimica Acta, v. 28, p. 1757-1786.
    Keith, M. L., and Parker, R. H., 1965, Local variation of 13C and 18O content of mollusk shells and the relatively minor temperature effect in marginal marine environments: Marine geology, v. 3, p. 115-129.
    Kirby, M. X., Soniat, T. M., and Spero, H. J., 1998, Stable isotope sclerochronology of Pleistoceneand recent oyster shells (Crassostrea virginica): Palaios, v. 13, p. 560–569.
    Klein, R. T., Lohmann, K. C., and Thayer, C. W., 1996a, Bivalve skeletons record sea-surface temperature and δ 18 O via Mg/Ca and 18 O/16 O ratios: Geology, v. 24, p. 415–418.
    Klein, R. T., Lohmann, K. C., and Thayer, C. W., 1996b, Sr/Ca and 13 C/12 C ratios in skeletal calcite of Mytilus trossulus: Covariation with metabolic rate, salinity and carbon iso-topic composition of seawater: Geochimica et Cosmochimica Acta, v. 60, p. 4207–4221.
    Krantz, D. E., Williams, D. F., and Jones, D. S., 1987, Ecological and Paleoenvironmental Information Using Stable Isotope Profiles from Living and Fossil Molluscs: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 58, p. 249-266.
    Landmann, G., Reimer, A., Lemcke, G., and Kempe, S., 1996, Dating Late Glacial abrupt climate changes in the 14,570 yr long continuous varve record of Lake Van, Turkey: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 122, p. 107-118.
    Lea, D. W., and Boyle, E. A., 1990, Foraminiferal reconstruction of barium distributions in water masses of the glacial oceans: Paleoceanography, v. 5, p. 719-742.
    Lea, D. W., Shen, G. T., and Boyle, E. A., 1989, Coralline barium records temporal variability in equatorial Pacific upwelling: Nature, v. 340, p. 373-376.
    Lorens, R. B., 1981, Sr, Cd, Mn and Co distribution coefficients in calcite as a function of calcite precipitation rate: Geochimica et Cosmochimica Acta, v. 45, p. 553–561.
    Lowenstam, H. A., and Weiner , S., 1989, On Biomineralization: Oxford, New York, 324 p.
    Lutz, R. A., 1981, Electron probe analysis of strontium in mussel (Bivalvia, Mytilidae) shells: Feasibility of estimating water temperature: Hydrobiologia, v. 83, p. 377-382.
    Marshall, J. D., 1992, Climatic and oceanographic isotopic signals from the carbonate rock record and their preservation: Geological Magazine, v. 129, p.143-160.
    Martinson, D. G., Pisias, N. G. , Hays, J. D., Imbrie, J., Moore, T. C., Jr., and Shackleton, N. J., 1987, Age dating and the orbital theory of the ice age; development of a high-resolution0 to 300,000-year chronostratigraphy: Quaternary Research, v. 27, p.1-29.
    McAlester, A. L., 1968, he History of Life: Prentice-Hall, Englewood Cliffs, N. J., 151 p.
    Mclntire, W. L., 1963, Trace element partition coefficients-a review of theory and applications to geology: Geochimica et Cosmochimica Acta, v. 27, p. 1209-1264.
    Millero, F. J., and Sohn, M. L., 1992, Chemical oceanography: CRC Press, 531 p.
    Mook, W. G., 1971, Paleotemperatures and chlorinities from stable carbon and oxygen isotopes in shell carbonate: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 9, p.245-263.
    Moore, T. C., Jr., Hutson, W. H., Kipp, N., Hays, J. D., Prell, W. L., Thompson, P., and Boden, G., 1981, The bio;ogical record of the ice-age ocean: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 35, p. 357–370.
    Nürnberg, D., Bijma, J., and Hemleben, C., 1996, Erratum: Assessing the reliability of magnesium in foraminiferal calcite as a proxy for water mass temperatures: Geochimica et Cosmochimica Acta, v. 60, p. 2483-2484.
    O’Neil, J. R., Clyton, R. N., and Mayeda, T.K., 1969, Oxygen isotope fractionation in divalent metal carbonates: Journal of Chemical Physics, v. 51, p. 5547-5558.
    Popp, B. N., Anderson, T. F., and Sandberg, P. A., 1986, Brachiopods as indicators of original isotopic compositions in some Paleozic limestones: Geological society of America Bulletin, v. 97, p. 1262-1269.
    Porter, S. C., and An, Z., 1995, Correlation between climate events in the North Atlantic and China during the last glaciation: Nature, v. 375, p. 305-308.
    Purton, L. M. A., Shields, G. A., Brasier, M. D., and Grime, G. W., 1999, Metabolism controls Sr/Ca ratios in fossil aragonitic mollusks: Geology, v. 27, p. 1083–1086.
    Romanek, C. S., Jones, D. S., Williams, D. F., Krantz, D. E., and Radtke, R., 1987, Stable isotopic investigation of physiological and environmental changes recorded in shell carbonate from the giant clam Tridacna maxima: Marine Biology, v. 94, p. 385-393.
    Rosenthal, Y., Field, M. P., and Sherrell, R. M., 1999, Precise determination of element/calcium ratios in calcareous samples using sector field inductively coupled plasma mass spectrometry: Analytical Chemistry, v. 71, p. 3248-3253.
    Ruddimand, W. F., 2000, Earth’s Climate─past and future: W. H. Freeman and Company, New York, 441p.
    Sato, S., 1995, Spawning periodicity and shell microgrowth patterns of the venerid bivalve Pgacosoma japonicum (Reeve, 1850): The Veliger, Vol. 38, p.61-72.
    Schifano, G., 1982, Temperature-magnesium relations in the shell carbonate of some modern marine gastropods: Chemical Geology, v. 35, p. 321-332.
    Shackleton, N. J., and Opdyke, N. D., 1973, Oxygen isotope and palaeomagnetic stratigraphy of equatorial Pacific core V28-238: Oxygen isotope temperatures and ice volumes on 105 year and 106 year scale: Quaternary Research, V.3, p. 39-55.
    Sinclair, D. J., Kinsley, L. P. J., and McCulloch, M. T., 1998, High resolution analysis of trace elements in corals by laser ablation ICP-MS: Geochimica et Cosmochimica Acta, v. 62, p. 1889-1901.
    Stecher, H. A., Krantz, D. E., Lord, C. J., Luther, G. W., and Bock, K. W., 1996, Profiles of strontium and barium in Mercenaria mercenaria and Spisula solidissima shells: Geochimica et Cosmochimica Acta, v. 60, p. 3445-3456.
    Veizer, J., 1983, Trace element and stable isotopes in sedimentary carbonates, in Reeder, R. J., ed., Carbonates: mineralogy and chemistry: Review in Mineralogy, v. 11, p. 265-299.
    Wang, C. H., Peng, T. R., and Chen, P. F., 1991, Oxygen and carbon isotopic compositions of mollusks from the late Pleistocene Szekou Formation, southern Taiwan:Proc. Natl. Sci. Counc. ROC(A), v. 15, p.455-464.
    Webb, T., III, 1998, Late Quaternary Climates: Data Synthesis and Model Experiments: Quaternary Science Reviews, v. 17, p. 587-606.
    Williams, P. W., Marshall, A., Ford, D. C. and Jenkinson, A. V., 1999, Palaeoclimatic interpretation of stable isotope data from Holocene speleothems of the Waitomo district, North Island, New Zealand: Holocene, v. 9, p. 649-657.
    Zylstra, U., Boer, H. H., and Sminia, T., 1987, Ultrastructure, histology and innervation of the mantle edge of the freshwater pulmonate snails Lymnae stagnalis and Biomphalaria pfeifferi: Calcif. Tissue Res., v. 26, p. 271-282.

    QR CODE