研究生: |
蔡志仁 Tsay, Jyh-Ren |
---|---|
論文名稱: |
動態連結多重表徵視窗環境下橢圓學習之研究 A Study of Learning Ellipse with Dynamic Linked Multiple Representations Windows |
指導教授: |
左台益
Tso, Tai-Yih |
學位類別: |
碩士 Master |
系所名稱: |
數學系 Department of Mathematics |
論文出版年: | 2000 |
畢業學年度: | 88 |
語文別: | 中文 |
論文頁數: | 119 |
中文關鍵詞: | 數學教育 、橢圓 、多重表徵 、電腦教學 |
英文關鍵詞: | Mathematical Education, Ellipse, Multiple Representations, Computer-based Instruction |
論文種類: | 學術論文 |
相關次數: | 點閱:301 下載:66 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究探討中學生橢圓概念表徵結構的學習歷程,並依據此結果設計動態連結多重表徵之視窗學習環境。學生在此學習環境中,能同時注意到橢圓的不同表徵及其間的連結。
整個研究主要分成兩個階段。第一階段的研究以九名高二學生為樣本,進行診斷性教學,研究結果發現:橢圓概念的外顯表徵主要有語意表徵、圖形表徵、軌跡表徵、方程表徵、以及結構表徵,學生在建構橢圓概念歷程中,依其先備知識的品質,會有不同的發展方向。而圖形表徵是成功解題的重要關鍵,當學生能將題意表徵與其他表徵整合到圖形表徵當中,達成多重表徵間的緊密連結,則較能成功解題。第二階段以高中二年級兩班學生為樣本,進行動態連結多重表徵視窗學習環境實驗教學,研究結果顯示在學習成就前、後測驗上,學生呈現顯著進步效果,實驗組進步分數優於控制組,但未達統計檢定的顯著水準。從解題時的表徵運用情形來看,實驗組學生傾向以圖形表徵作主為表徵,並整合其他表徵於圖形中。
此研究所討論之中學生橢圓概念多重表徵建構歷程,以及動態幾何視窗學習環境之設計概念,可提供中學實務教學之參考。
This study initially investigated the learning processes of high-school students and how they represent elliptical concepts and interlink them. The results were used to develop computer based instructional tools. The way in which these tools affected the student’s representations was then studied.
The research was in two parts: Initially nine student volunteers participated in the study; each was given diagnostic teaching. It was found that the main external representations of elliptical concepts are verbal, graphical, structural, formulaic, and locus representation. Students were found to have different ways to develop their elliptical concepts, according to their initial knowledge. When students could represent the problem and their related ideas in terms of graphical representation, then they could develop links between different representations, and could thus solve problems more easily.
In the second part of the research two high school classes were compared. A computer-based dynamic linked multiple representation Windows learning environment was used to teach one class. The results showed that students could make significant progress when taught in this way. The progress scores of the experimental group were higher than the control group, but this was not statistically significant. It was found that the experimental group tended to employ graphical representation as their main representation and use it to integrate the other representations.
This paper analyses high school instruction for teaching elliptical concepts, looking in particular at the process by which students construct multiple elliptical representations. It also gives insights into the design of computer-based dynamic linked multiple representation Windows learning environments
參考文獻
中文部分:
王文科(民88)。教育研究法。台北市:五南。
朱綺鴻(民87)。國中數學學習成就優異學生數學能力分析。國立台灣師範大學教育研究所士論文。
林保平(民85)。動態幾何軟體在教學上的應用。八十四學年度輔導地方教育輔導教師研討活動論文集。128-152頁。
林保平(民87)。動態的勾股定理:電腦輔助教學環境。科學教育210期 pp.12-23。
林美惠(民86)。題目表徵型式與國小二年級學生解題之相關研究。國立嘉義師範學院國教所碩士論文。
林敏雪(民86)。國中二年級數學方程式表徵及解題困難學生之研究。國立高雄師範大學教育研究所碩士論文。
林清山譯,Richard E. Mayer著(民86)。教育心理學—認知取向。台北:遠流出版公司,三版。
林福來、陳美芳、吳毓瑩、金鈐、江南青、李源順、鄭英豪、林桂蓉、朱綺鴻、陳英娥、吳慧真、陳儀君、黃凡玲(民86)。教學思維的發展:整合數學教學知識的教材教法。國家科學委員會年度計劃執行進度報告。p.13。
洪榮昭、劉明洲(民86)。電腦輔助教學之設計原理與應用。台北市:師大書苑。
紀惠英(民79)。國小六年級學生應用問題表徵類型與同構性之研究。國立台灣師範大學特殊教育研究所碩士論文。
張國恩(民88)。資訊融入各科教學之內涵與實施。資訊與教育雜誌72,AUG,P2-9。
張景媛(民80)。從認知心理學談教學媒體的功能。載於國立台灣師大學術研究委員會主編,教學媒體研究,34-47頁。台北市:五南。
陳李綢(民81)。認知發展與輔導。台北:心理。
陳英娥(民81)。電腦輔助教學在國中數學科學習成效之研究。國立高雄師範大學數學研究所碩士論文。
陳建誠(民87)。面積表徵的轉換。國立台灣師範大學數學研究所碩士論文。
黃振球(民80)。教學媒體與學生學習成效。載於國立台灣師大學術研究委員會主編,教學媒體研究,15-29頁。台北:五南。
曾錦達(民73)。電腦輔助教學在高中數學物理實施課後輔導之研究。國立台灣師範大學教育研究所碩士論文。
盧荻元(民81)。微積分學習的困難與情況分析。國立彰化師範大學科學教育研究所碩士論文。
簡明大英百科全書(民77)。第九冊。台北:台灣中華書局,621頁。
英文部分:
Ausubel, D. P. (1968). Educational Psychology: A cognitive approach. New York: Holt, Rinehart and Winston, Inc.
Barger, R.N. (1983). The computer as a humanizing influence in education. T.H.E. Journal. May, P109-111.
Board of Senior Secondary Studies. (1995). Examiner's Report (Mathematics 1). Brisbane.
Bork, A. (1979). Interactive learning. In R.P. Taylor (Ed.), The computer in the school: Tutor, tool, tutee. (pp.53-66). New York: Teachers College.
Chinnappan, M. (1998). Schemas and mental models in geometry problem solving. Educational Studies in Mathematics 36: P201-217.
Clements, D. H. (1990). The effects of Logo on children’s conceptualizations of angle and Polygons. Journal of Research in Mathematics Education, 21(5), P356-371.
Clements, D., & Battista, M. (1994). Computer Environments for Learning Geometry. Journal of Educational Computing Research, 10(2): P173-197.
Coxfard, A. F. (1995). The Case Connections. Connecting Mathematics across the Curriculum. House, P. A. & Coxford, A. F. (Eds). National Council of Teachers of Mathematics. Yearbook (1995). P3-12.
de Jong, T.; Ainsworth, S.; Dobson, M.; van der Hulst, A.; Levonen, J.; Rimann, P.; Sime, J.; van Someren, M. W.;Spada, H.; Swaak, J. (1998) Acquiring Knowledge in Science and Mathematics: The Use of Multiple Representations in Technology-Based Learning Environments. Learning with Multiple Representations. Edited by Maarten W van Someren, et al. UK: Earil.
Dembo, M. H. (1988). (3rd. ed.). Applying educational psychology in the classroom. New York: Long-man.
diSessa, A. (1987). Phenomenology and the Evolution of Intuition. Problems of Representation in The Teaching and Learning of Mathematics. Edited by Claude Janvier: Lawrence Erlbaum, Hillsdale, NJ. P83-96.
Dreyfus, T. (1993). Advanced Mathematical Thinking. Mathematics and Cognition: A Research Synthesis. by the International Group for the Psychology of Mathematics Education. Edited by Pearla Nesher and Jeremy Kilpatrick. Cambridge University Press.
Dubinsky, E. (1991). Reflective abstraction in advanced mathematical thinking. In D. Tall (Ed.), Advanced mathematical thinking. London: Reidel.
Dudour-Janvier, B, Bednarz, N & Belanger, M. (1987). Pedagogical Considerations Concerning the Problem of Representation. Problems of Representation in the Teaching and Learning of Mathematics. Edited by Claude Janvier: Lawrence Erlbaum, Hillsdale, NJ. P109-122.
Dunham, P. H., & Thomas P. D. (1994). Research on Graphing Calculators. Mathematics Teacher 86: P440-45
English, L. D. & Halford, G. S.: (1995), Mathematics Education: Models and Processes. Hillsdale, NJ: Lawrence Erlbaum.
Gage, N. L. & Berliner, D.C. (1984). (3rd. ed.). Educational psychology. Boston, MA: Houghton Mifflin.
Gagne, E. D.(1985). The Cognitive Psychology of School Learning. MV.
Gagné, R. M. (1985). (4th ed.). The Conditions of Learning. New York: Holt, Rineheart and Winston.
Gay, G. (1986). Interaction of learner control and prior understanding in computer assisted video instruction. Journal of Education Psychology, 78(3), 225-227.
Glaser, R. (1984). Education and thinking: The role of knowledge. American Psychologist 39, 93-104.
Goldin, A.(1987). Cognitive Representational Systems for Mathematical Problem Solving. Problems of Representation in the Teaching and Learning of Mathematics. Edited by Claude Janvier: Lawrence Erlbaum, Hillsdale, NJ. p125-145.
Hart, K. & Sinkinson, A (1987). Forging the Link Between Practical and Formal Mathematics. Proceedings of the 12th Annual Conference of the International Group for Psychology of Mathematics Education, Budapest
Jackiw, N. (1991). Geometer's Sketchpad. (computer program). Berkeley, CA: Key Curriculum Press.
Janvier, C. (1987a). Conceptions and Representation: The Circle as an Example. Problems of Representation in the Teaching and Learning of Mathematics. Edited by Claude Janvier: Lawrence Erlbaum, Hillsdale, NJ. p147-158.
Janvier, C. (1987b). Multiple Embodiment Principle. Excerpts From the Conference. Problems of Representation in the Teaching and Learning of Mathematics. Edited by Claude Janvier: Lawrence Erlbaum, Hillsdale, NJ. P99-107.
Janvier, C. (1987c). Representation and Understanding: The Notion of Function as an Example. Problems of Representation in the Teaching and Learning of Mathematics. Edited by Claude Janvier: Lawrence Erlbaum, Hillsdale, NJ. p 67-71.
Janvier, C. (1987d). Translation Processes in Mathematics Education. Problems of Representation in the Teaching and Learning of Mathematics. Edited by Claude Janvier: Lawrence Erlbaum, Hillsdale, NJ. p 27-32.
Kaput, J. J. (1987). Representation Systems and Mathematics. Problems of Representation in the Teaching and Learning of Mathematics. Edited by Claude Janvier : Lawrence Erlbaum, Hillsdale, NJ. p19-26.
Kaput, J. J. (1992). Technology and mathematics education. In D. A. Grouws (Ed.). Handbook of Teaching and Learning Mathematics. (pp. 515-556). New York: Macmillan.
Kulik, J. A., Kulik, C. C. & Cohen, P. A. (1980). Effectiveness of computer-based college teaching: A meta-analysis of findings. Review of Educational Research. 5, 525-544.
Lawson, M. J. & Chinnappan, M. (1994). Generative activity during geometry problem solving: Comparison of the performance of high-achieving and low-achieving students’. Cognition and Instruction. 12(1), 61-93.
Lefrancois, G. R. (1988). (6th. Ed.). Psychology for Teaching. Belmont, CA: Wadsworth Publishing Company.
Lehtinen, E. & Repo, S. (1996) Activity, Social Interaction, and Reflective Abstraction: Learning Advanced Mathematical Concepts in a Computer Environment. International Perspectives on the Design of Technology-Supported Learning Environments. Edited by Stella Vosniadou et al.: Lawrence Erlbaum, Mahwah, NJ. P105-129.
Lesh, R. (1987). The Evolution of Problem Representation in the Presence of Powerful Conceptual Amplifiers. Problems of Representation in the Teaching and Learning of Mathematics. Edited by Claude Janvier: Lawrence Erlbaum, Hillsdale, NJ. P 33-40.
Lesh, R., Post, T. & Behr M. (1987). Representations and Translations among Representations in Mathematics Learning and Problem Solving. Problems of Representation in the Teaching and Learning of Mathematics. Edited by Claude Janvier: Lawrence Erlbaum, Hillsdale, NJ. P 33-40.
Mason, J. (1987). What Do Symbols Represent? Problems of Representation in the Teaching and Learning of Mathematics. Edited by Claude Janvier : Lawrence Erlbaum, Hillsdale, NJ. p73-81.
National Council of Teachers of Mathematics. (1989). Curriculum and evaluation standards for school mathematics. Reston, VA: NCTM.
National Council of Teachers of Mathematics. (1998). Principles and Standards for School Mathematics: Discussion Draft. Download from http://www.ntcm.org.
Mayer, R. E. (1992). Educational Psychology: A cognitive approach. Boston, MA: Little Brown and Company.
Nesher, P. & Hershkovitz, S. (1994). The role of schemes in two-step problems: Analysis and research findings. Educational Studies in Mathematics. 26, 1-23.
Noss, R. & Hoyles, C. (1996). Windows on Mathematical Meanings: Learning Cultures and Computers. Netherlands. Kluwer Academic Publishers.
Papert, S. (1980). Mindstorms: Children, computers, and powerful ideas. New York: Basic Books.
Resnick, L. B. and Ford, W. W. (1981), The psychology of mathematics for instruction. Hillsdale, NJ: Lawrence Erlbaum.
Roberts, D. L.& Stephens L. J. (1999). The Effect of the Frequency of Usage of Computer Software in High School Geometry. Journal of Computers in Mathematics and Science Teaching. 18(1), 23-30
Rochowicz, JR J.A. (1996) The Impact of Using Computers and Calculators on Calculus Instruction: Various Perceptions. Journal of Computers in Mathematics and Science Teaching, 15(4), 423-435
Rojano, T. (1996). Developing Algebraic Aspects of Problem Solving within a Spreadsheet Environment. In Approaches to Algebra: Perspectives on Research and Teaching, edited by Nadine Bednarz, Carolyn Kieran, and Lesley Lee. Dordrecht, Netherlands: Kluwer,
Sales, G. C. & Williams, M. D. (1988). The effect of adaptive control of feedback in computer-based instruction. Journal of Review on Computer in Education. 21(1), 97-111.
Schumann, H. (1992). Didactic Aspects of Geometry Learning in Secondary Education Using the Computer as an Interactive Tool. Journal of Computers in Mathematics and Science Teaching. 11(2): 217-242.
Schwarz, B. B., Nathan, M. J. & Resnick, L. B. (1996). Acquisition of Meaning for Arithmetic Structures With the Planner. International Perspectives on the Design of Technology-Supported Learning Environments. Edited by Stella Vosniadou et al.: Lawrence Erlbaum, Mahwah, NJ. P105-129.
Sheets, C. (1993). Effects of Computer Learning and Problem-Solving Tools on the Development of Secondary School Students’ Understanding of Mathematical Functions. Ph.D. Diss., University of Maryland, Department of Curriculum and Instruction,
Siegel, M.A. & Davis, D.M. (1986). Understanding computer-based education. New York: Random House.
Slavin, R. (1988). (2nd. Ed.). Educational psychology: Theory into practice. Englewood Cliffs, NL: Prentice Hall.
Tall, D. (1992). The Transition to Advanced Mathematical Thinking: Function, Limits, Infinity, And Proof. In D. A. Grouws (Ed.). Handbook of Teaching and Learning Mathematics. (pp. 495-511). New York: Macmillan.
Vergnaud, G. (1987). Conclusion. Problems of Representation in the Teaching and Learning of Mathematics. Edited by Claude Janvier: Lawrence Erlbaum, Hillsdale, NJ. p227-232.
Vidakovic, D. (1996). Learning the Concept of Inverse Function. JI. of Computers in Mathematics and Science Teaching 15(3), 295-318
von Glasersfeld, E. (1987). Preliminaries to Any Theory of Representation. Problems of Representation in the Teaching and Learning of Mathematics. Edited by Claude Janvier: Lawrence Erlbaum, Hillsdale, NJ. p215-225.
Vosniadou, S. (1996). Environments for Representational Growth and Cognitive Flexibility. International Perspectives on the Design oof Technology-supported Learning Environments, Mahwah, NJ: Lawreence Erlbaum Associates.
Watson, P.G. (1972). Using the computer in education. Englewood Cliffs, NJ: Educational Technology.
Winn, W. (1999) Learning in Virtual Environments : A Theoretical Framework and Consideraton for Design. 虛擬環境中學習:理論架構與設計考慮。翻譯:單文經。校閱:邱貴發。 教學科技與媒體47(1999年10月):24-32