簡易檢索 / 詳目顯示

研究生: 陳慧瑜
Chen, Huei-Yu
論文名稱: 利用酵素連續催化顯色反應偵測酪胺酸及酪胺酸酶活性
The Enzyme Cascade-Triggered Colorimetric Reaction for the Detection of Tyrosine and Tyrosinase Activity
指導教授: 葉怡均
Yeh, Yi-Chun
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 75
中文關鍵詞: 酪胺酸酪胺酸酶4,5-多巴雙加氧酶甜菜醛胺酸甜菜色素酵素連續催化比色法生物感測器
英文關鍵詞: tyrosine, tyrosinase, 4,5-dopa dioxygenase, betalamic acid, betaxanthin, enzyme cascade, colorimetric biosensor
DOI URL: http://doi.org/10.6345/NTNU202000728
論文種類: 學術論文
相關次數: 點閱:82下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 誌謝 i 中文摘要 ii ABSTRACT iii Abbreviations iv 目錄 v 表目錄 ix 圖目錄 x Chapter 1 Introduction 1 1.1 生物感測器 (Biosensor) 1 1.1.1 前言 1 1.1.2 生物感測器的偵測機制介紹 1 1.1.3 生物感測器的種類 2 1.1.4 酵素生物感測器 (Enzyme-based Biosensor) 3 1.2 酪胺酸 (Tyrosine, Tyr) 5 1.2.1 酪胺酸介紹 5 1.2.2 酪胺酸代謝異常之相關疾病 6 1.3 酪胺酸酶 (Tyrosinase) 8 1.3.1 酪胺酸酶介紹 8 1.3.2 酪胺酸酶表達異常之相關疾病 9 1.4 多巴雙加氧酶 (DOPA-Dioxygenase) 11 1.5 甜菜醛胺酸及甜菜色素 (Betalamic Acid and Betalain) 13 1.5.1 甜菜醛胺酸的合成 13 1.5.2 甜菜色素的合成 14 1.6 文獻回顧 (Literature Review) 16 1.6.1 酪胺酸感測器 16 1.6.2 酪胺酸酶感測器 17 1.6.3 與先前研究文獻之感測器比較 18 1.7 實驗動機與目的 19 Chapter 2 Materials and Experimental Methods 20 2.1 實驗儀器 20 2.2 實驗藥品 21 2.3 酵素連續催化生物感測器之設計 23 2.4 蛋白質表達與純化 24 2.4.1 蛋白質表達與純化實驗流程 24 2.4.2 DOD蛋白表達之質體設計 24 2.4.3 勝任細胞的製作 25 2.4.4 轉化作用 26 2.4.5 DOD蛋白大量表達及純化 27 2.4.6 十二烷基硫酸鈉聚丙烯醯胺凝膠電泳(Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis, SDS-PAGE) 29 2.4.7 蛋白質濃度定量 33 2.5 酵素連續催化感測器的條件優化 34 2.5.1 環境pH值的影響 34 2.5.2 酪胺酸酶及4,5-多巴雙加氧酶的濃度影響 34 2.5.3 輔因子濃度的影響 34 2.5.4 酵素連續催化感測器用於酪胺酸之偵測 35 2.5.5 酵素連續催化感測器用於酪胺酸酶之偵測 35 2.5.6 甜菜色素之合成 36 2.5.7 胎牛血清與人工尿液樣品的配製 36 2.5.8 酪胺酸及酪胺酸酶之試紙型比色法感測器 36 2.5.9 酪胺酸酶抑制劑之篩選 37 2.5.10 偵測極限公式計算 37 Chapter 3 Results and Discussions 38 3.1 酵素連續催化感測器之實驗條件優化 38 3.1.1 環境pH值對酵素連續催化感測器之影響 38 3.1.2 酪胺酸酶及4,5-多巴雙加氧酶的濃度變化之影響 39 3.1.3 生成甜菜醛胺酸之時間追蹤 40 3.1.4 輔因子濃度對酵素連續催化感測器之影響 41 3.1.5 使用不同胺類縮合成甜菜色素 43 3.2 酪胺酸劑量反應 45 3.2.1 利用甜菜醛胺酸作為輸出訊號 45 3.2.2 利用甜菜色素作為輸出訊號 48 3.3 酪胺酸感測器之專一性測試 50 3.3.1 干擾物之吸收值比較 50 3.3.2 干擾物之混合干擾測試 52 3.4 酵素連續催化系統與酪胺酸酶系統之比較 54 3.5 酪胺酸感測器之應用 57 3.5.1 真實樣品之檢測 57 3.5.2 酪胺酸感測器應用於試紙之測定 61 3.6 酵素連續催化感測器偵測酪胺酸酶之實驗條件優化 63 3.7 酪胺酸酶劑量反應 64 3.7.1 利用甜菜醛胺酸作為輸出訊號 64 3.7.2 利用甜菜色素作為輸出訊號 65 3.8 酪胺酸酶感測器之專一性測試 66 3.9 酪胺酸酶感測器之應用 67 3.9.1 真實樣品之檢測 67 3.9.2 酪胺酸酶之抑制劑測試 69 Chapter 4 Conclusions 71 REFERENCE 72 附錄 本研究中所使用之菌種與質體 75

    1. Mehrotra, P., Journal of oral biology and craniofacial research 2016, 6, 153–159.
    2. Estrela, P.; Bhalla, N.; Jolly, P.; Formisano, N.; Estrela, P., Essays in Biochemistry 2016, 60, 1–8.
    3. Rogers, K. R., Molecular biotechnology 2000, 14, 109–129.
    4. Ronkainen, N. J.; Halsall, H. B.; Heineman, W. R., Chemical Society Reviews 2010, 39, 1747–1763.
    5. Enzymes and Enzymatic Sensors. Chemical Sensors and Biosensors, 2012, 28–49.
    6. Martins, T. D.; Ribeiro, A. C. C.; Colmati, F.; de Souza, G. A.; de Camargo, H. S.; Dias, D. L.; da Costa Filho, P. A.; de Sousa Cordeiro, D., Supramolecular materials for optical and electrochemical biosensors. Biosensors: Micro and Nanoscale Applications 2015, 137.
    7. Palmer, T.; Bonner, P., Biotechnology, Clinical Chemistry. Horwood Publishing Chichester 2001.
    8. What are Chemical Sensors? Chemical Sensors and Biosensors, 2012, 1–20.
    9. Wang, J., Electroanalysis: An International Journal Devoted to Fundamental and Practical Aspects of Electroanalysis 2001, 13, 983–988.
    10. Kuhar, M. J.; Couceyro, P. R.; Lambert, P. D., Basic neurochemistry: molecular, cellular and medical aspects 1999, 243–262.
    11. Daubner, S. C.; Le, T.; Wang, S., Archives of biochemistry and biophysics 2011, 508, 1–12.
    12. Hasegawa, T., International Journal of Molecular Sciences 2010, 11, 1082–1089.
    13. Lerner, A. B.; Fitzpatrick, T. B., Physiological reviews 1950, 30, 91–126.
    14. Mistry, J. B.; Bukhari, M.; Taylor, A. M., Rare Diseases 2013, 1, e27475.
    15. Suwannarat, P.; O'Brien, K.; Perry, M. B.; Sebring, N.; Bernardini, I.; Kaiser-Kupfer, M. I.; Rubin, B. I.; Tsilou, E.; Gerber, L. H.; Gahl, W. A., Metabolism 2005, 54, 719-728.
    16. Nakamura, K.; Matsumoto, S.; Mitsubuchi, H.; Endo, F., Pediatrics International 2015, 57, 37–40.
    17. Kvittingen, E., Scandinavian journal of clinical and laboratory investigation. Supplementum 1986, 184, 27–34.
    18. Hunziker, N., Dermatology 1980, 160, 180–189.
    19. Szymanska, E.; Sredzinska, M.; Ciara, E.; Piekutowska-Abramczuk, D.; Ploski, R.; Rokicki, D.; Tylki-Szymanska, A., Molecular Genetics and Metabolism Reports 2015, 5, 48–50.
    20. Scriver, C. R., The metabolic & molecular bases of inherited disease. New York; Montreal: McGraw-Hill: 2001; Vol. 4.
    21. Wang, N.; Hebert, D. N., Pigment cell research 2006, 19, 3–18.
    22. Mikami, M.; Sonoki, T.; Ito, M.; Funasaka, Y.; Suzuki, T.; Katagata, Y., Molecular medicine reports 2013, 8, 818–822.
    23. Serre, C.; Busuttil, V.; Botto, J. M., International journal of cosmetic science 2018, 40, 328–347.
    24. Busca, R.; Ballotti, R., Pigment Cell Res 2000, 13, 60–9.
    25. Ito, S.; Wakamatsu, K., Photochemistry and photobiology 2008, 84, 582–592.
    26. Chang, T.-S., Materials 2012, 5, 1661–1685.
    27. Holcomb, N. C.; Bautista, R.-M.; Jarrett, S. G.; Carter, K. M.; Gober, M. K.; D’Orazio, J. A., Advances in protein chemistry and structural biology, 2019, 115, 247–295.
    28. Rao, A. R.; Sindhuja, H.; Dharmesh, S. M.; Sankar, K. U.; Sarada, R.; Ravishankar, G. A., Journal of agricultural and food chemistry 2013, 61, 3842–3851.
    29. Song, Y.-H.; Connor, E.; Li, Y.; Zorovich, B.; Balducci, P.; Maclaren, N., The Lancet 1994, 344, 1049–1052.
    30. Asanuma, M.; Miyazaki, I.; Ogawa, N., Neurotoxicity research 2003, 5, 165–176.
    31. Nakamura, Y.; Fujisawa, Y., Current treatment options in oncology 2018, 19, 42.
    32. Menon, I. A.; Haberman, H. F., Cancer research 1968, 28, 1237–1241.
    33. Ezzedine, K.; Eleftheriadou, V.; Whitton, M.; van Geel, N., The Lancet 2015, 386, 74–84.
    34. Baharav, E.; Merimski, O.; Shoenfeld, Y.; Zigelman, R.; Gilbrud, B.; Yecheskel, G.; Youinou, P.; Fishman, P., Clinical & Experimental Immunology 1996, 105, 84–88.
    35. Deng, H.-H.; Lin, X.-L.; He, S.-B.; Wu, G.-W.; Wu, W.-H.; Yang, Y.; Lin, Z.; Peng, H.-P.; Xia, X.-H.; Chen, W., Microchimica Acta 2019, 186, 301.
    36. Sidhu, J. S.; Singh, N., Journal of Materials Chemistry B 2018, 6, 4139–4145.
    37. Jankovic, J., Journal of neurology, neurosurgery & psychiatry 2008, 79, 368–376.
    38. Saghaie, L.; Pourfarzam, M.; Fassihi, A.; Sartippour, B., Research in pharmaceutical sciences 2013, 8, 233.
    39. Vaillancourt, F. H.; Bolin, J. T.; Eltis, L. D., Critical Reviews in Biochemistry and Molecular Biology 2006, 41, 241–267.
    40. Nakatsuka, T.; Yamada, E.; Takahashi, H.; Imamura, T.; Suzuki, M.; Ozeki, Y.; Tsujimura, I.; Saito, M.; Sakamoto, Y.; Sasaki, N., Scientific reports 2013, 3, 1970.
    41. Terradas, F.; Wyler, H., Helvetica chimica acta 1991, 74, 124–140.
    42. Wang, Y.; Shin, I.; Fu, Y.; Colabroy, K. L.; Liu, A., Biochemistry 2019.
    43. Colabroy, K. L.; Smith, I. R.; Vlahos, A. H.; Markham, A. J.; Jakubik, M. E., Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics 2014, 1844, 607–614.
    44. Sasaki, N.; Abe, Y.; Goda, Y.; Adachi, T.; Kasahara, K.; Ozeki, Y., Plant and cell physiology 2009, 50, 1012–1016.
    45. Grewal, P. S.; Modavi, C.; Russ, Z. N.; Harris, N. C.; Dueber, J. E., Metabolic engineering 2018, 45, 180–188.
    46. Grewal, P. S.; Modavi, C.; Russ, Z. N.; Harris, N. C.; Dueber, J. E., Metab Eng 2018, 45, 180–188.
    47. Schliemann, W.; Kobayashi, N.; Strack, D. J. P. P., Plant Physiology, 1999, 119, 1217–1232.
    48. Sekiguchi, H.; Ozeki, Y.; Sasaki, N., Journal of Agricultural and Food Chemistry 2010, 58, 12504–12509.
    49. Chou, Y.-C.; Shih, C.-I.; Chiang, C.-C.; Hsu, C.-H.; Yeh, Y.-C., Sensors and Actuators B: Chemical 2019, 126717.
    50. Esatbeyoglu, T.; Wagner, A. E.; Schini-Kerth, V. B.; Rimbach, G., Molecular Nutrition & Food Research 2015, 59, 36–47.
    51. Ishii, Y.; Iijima, M.; Umemura, T.; Nishikawa, A.; Iwasaki, Y.; Ito, R.; Saito, K.; Hirose, M.; Nakazawa, H., Journal of pharmaceutical and biomedical analysis 2006, 41, 1325–1331.
    52. Apetrei, I. M.; Apetrei, C., Materials 2019, 12, 1009.
    53. Wei, W.; Hong-Jian, W.; Chong-Qiu, J.; Jing-Min, S., Chinese Journal of Analytical Chemistry 2007, 35, 1772–1775.
    54. Wibrand, F., Clinica chimica acta 2004, 347, 89–96.
    55. Girelli, A. M.; Mattei, E.; Messina, A., Biomedical Chromatography 2004, 18, 436–442.
    56. Yildiz, H. B.; Freeman, R.; Gill, R.; Willner, I., Analytical chemistry 2008, 80, 2811–2816.
    57. Zhao, J.; Wang, S.; Lu, S.; Bao, X.; Sun, J.; Yang, X., Analytical chemistry 2018, 90, 7754–7760.
    58. Chen, J.; Wei, X.; Tang, H.; Ali, M. C.; Han, Y.; Li, Z.; Qiu, H., Sensors and Actuators B: Chemical 2020, 305.
    59. Xu, Q.; Yoon, J., Chemical Communications 2011, 47, 12497–12499.
    60. Liu, G.; Zhao, J.; Lu, S.; Wang, S.; Sun, J.; Yang, X., ACS sensors 2018, 3, 1855–1862.
    61. Ohtomo, T.; Igarashi, S.; Takagai, Y.; Ohno, O., Journal of analytical methods in chemistry 2012, 2012.
    62. Bornhorst, J. A.; Falke, J. J., Methods in enzymology, 2000, 326, 245–254.
    63. Samuelson, J. C., Heterologous Gene Expression in E. coli, 2011, 195–209.
    64. Lin, Y.-K.; Yeh, Y.-C., Analytical chemistry 2017, 89, 11178–11182.
    65. Wang, H.; Lu, Y.; Wang, L.; Chen, H., Talanta 2019, 197, 558–566.
    66. Class, S.; Class, S., Human Metabolome Database. Enzyme 2006, 1, 14.
    67. Saini, A. S.; Kumar, J.; Melo, J. S. J. A. c. a., Analytica chimica acta, 2014, 849, 50–56.
    68. Rojas, J.; Bedoya, M.; Ciro, Y., Cellulose-Fundamental aspects and current trends 2015, 8, 193–228.
    69. Burdock, G. A.; Soni, M. G.; Carabin, I. G., Regulatory Toxicology and Pharmacology 2001, 33, 80–101.
    70. Zolghadri, S.; Bahrami, A.; Hassan Khan, M. T.; Munoz-Munoz, J.; Garcia-Molina, F.; Garcia-Canovas, F.; Saboury, A. A., Journal of Enzyme Inhibition and Medicinal Chemistry 2019, 34, 279–309.
    71. Kim, T.-I.; Park, J.; Park, S.; Choi, Y.; Kim, Y., Chemical Communications 2011, 47.

    無法下載圖示 電子全文延後公開
    2025/07/17
    QR CODE