簡易檢索 / 詳目顯示

研究生: 曾家凱
Tseng Chia Kai
論文名稱: 探討(Metal-salen)錯合物在有機鹼催化二氧化碳與環氧化物環加成反應中的影響
The effects of metal-salen in the coupling reaction of carbon dioxide and epoxides catalyzed by organic bases.
指導教授: 徐新光
Shyu, Shin-Guang
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2005
畢業學年度: 94
語文別: 中文
論文頁數: 65
中文關鍵詞: 環氧化物與二氧化碳
英文關鍵詞: salen and epoxide
論文種類: 學術論文
相關次數: 點閱:251下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

在我們之前研究中發現單獨有機鹼DMAP、Et3N、DBU的存在便具有催化性,且產物全為五員環的環狀碳酸酯,所以本篇論文我們以有機鹼作為催化劑,探討加入不同Metal-salen時,對於二氧化碳與環氧化物環化加成反應中的影響。且針對壓力、Metal-salen濃度、環氧化物種類及反應時間,討論改變各變數後對於其催化過程的影響。
由於Metal-salen為一個可以活化環氧化物的金屬錯合物,於是我們加入不同的Metal-salen比較其結果,發現並非所有的Metal-salen都可活化環氧化物,進而提高產率,如Cu-salen、Ni-salen在以環氧丙烷作為起始物的反應中,有抑制產率的上升,反之Cr-salen卻可以提高產率而且與DMAP有機鹼結合時的催化系統產率為最高。
另外根據Metal-salen可以活化環氧化物,有機鹼可以作為一親核試劑攻擊被活化的環氧化物,合成一具有長鏈有機鹼Metal-salen,並探討其對於環化加成反應的影響。

It has been reported that Organic bases of DMAP、Et3N and DBU can catalyze the reaction of epoxides with carbon dioxide to produce the five-membered cyclic carbonate. Employing different metal-salens in the reaction of epoxides with carbon dioxide, in the presence of organic bases were undertaken. It was found that not all metal-salens could enhance the yield of the reaction. Both Cu-salen and Ni-salen can stunt the raising yield in the reaction as the propylene oxide is an initiator. On the contrary, Cr-salen can increase the yield effectively and was the best catalytic system when use DMAP as the catalyst.
In addition, we also discussed the effects of changing the reaction pressure, the equivalents of promoter, and the reaction time in the reaction of epoxides with carbon dioxide.
Finally, based on the organic bases could be treated as nucleophiles to attack eopxides and metal-salen could activate epoxides, we synthesis metal-salens with long chain organic base, and discuss the effect in the ring addition reactions. It was found that metal-salens with long chain organic base could enhance the yield more than other catalysts like organic base or metal-salens.

中文摘要--------------------------------------------------------------------------Ⅰ 英文摘要--------------------------------------------------------------------------Ⅱ 目錄--------------------------------------------------------------------------------Ⅲ 表目錄-----------------------------------------------------------------------------Ⅴ 圖目錄-----------------------------------------------------------------------------Ⅵ 第一章 緒論 1-1 觸媒的簡介----------------------------------------------------------------1 1-2 觸媒的分類----------------------------------------------------------------2 1-3 二氧化碳的回收動機----------------------------------------------------2 1-4 回收二氧化碳的反應----------------------------------------------------3 1-5 環狀碳酸酯的簡介-------------------------------------------------------6 1-6 合成環狀碳酸酯的文獻回顧-------------------------------------------6 1-7 研究目標-------------------------------------------------------------------9 第二章 實驗 2-1 藥品------------------------------------------------------------------------11 2-2 實驗儀器------------------------------------------------------------------13 2-3 實驗氣體------------------------------------------------------------------13 2-4 觸媒合成----------------------------------------------------------------14 2-5 實驗步驟------------------------------------------------------------------19 第三章 結果與討論 3-1 環狀碳酸酯的鑑定------------------------------------------------------22 3-2 Metal-salen的來源及鑑定----------------------------------------------22 3-3 二氧化碳與環氧化物的催化反應------------------------------------23 3-4 討論有機鹼與Metal-salen在催化加成反應的角色----------------24 3-5 有機鹼的催化能力------------------------------------------------------26 3-6 不同促進劑對於催化反應的影響------------------------------------27 3-7 推測反應機構------------------------------------------------------------31 3-8 不同官能基的環氧化物對於催化反應的影響---------------------34 3-9 壓力對於催化反應的影響---------------------------------------------34 3-10 促進劑含量對於催化反應的影響------------------------------------36 3-11 反應時間對於催化反應的影響---------------------------------------37 3-12 N,N’-bis(4-bromo-2-[(2-diethylaminoethyl)methylaminomethyl] -6-salicylidene) -1,2-cyclohexanediamine Co(II)(長鏈Co(II)salen)對於催化反應的影響---------------------------------------------------38 第四章 結論-------------------------------------------------------------------40 參考文獻-------------------------------------------------------------------------61 表目錄 表3-1 Metal-salen元素分析------------------------------------------------48 表3-2 環氧丙烷和二氧化碳的催化加成反應-----------------------------56 表3-3 有機鹼的催化能力-----------------------------------------------------56 表3-4 環氧丙烷和二氧化碳在不同Metal-salen錯合物的反應--------57 表3-5 環氧氯丙烷和二氧化碳在不同Metal-salen錯合物的反應-----58 表3-6 環氧化物的改變對催化反應的影響--------------------------------59 表3-7 環氧丙烷和二氧化碳在不同壓力下的催化反應-----------------59 表3-8 促進劑含量對於在環氧丙烷和二氧化碳催化反應的影響-----60 表3-9 反應時間對於在環氧丙烷和二氧化碳催化反應的影響--------60 圖目錄 圖 1-1 工業上常見的二氧化碳回收反應----------------------------------5 圖 1-2 salen-ligand和porphyrin的結構------------------------------------8 圖 1-3 metal-salen和metal-porphyrin的結構-----------------------------8 圖 1-4 Yoshihara所推測的反應機構---------------------------------------9 圖 1-5 Kiyotomi Kaneda所推測的反應機構------------------------------9 圖 2-1 salen-ligand的核磁共振光譜圖-----------------------------------41 圖 2-2 salen-ligand的紅外線光圖譜--------------------------------------42 圖 2-3 Ni(II)salen的紅外線光圖譜---------------------------------------42 圖 2-4 Cu(II)salen的紅外線光圖譜---------------------------------------43 圖 2-5 Co(III)salen.MeOH的紅外線光圖譜---------------------------43 圖 2-6 4-bromo-2-[(2-diethylaminoethyl)methylaminomethyl]-6- formylphenol的核磁共振光譜圖--------------------------------44 圖 2-7 N,N’-bis(4-bromo-2-[(2-diethylaminoethyl)methylamino methyl]-6-salicylidene) -1,2-cyclohexanediamine的核磁共振光譜圖-----------------------------------------------------------------45 圖2-8 N,N’-bis(4-bromo-2-[(2-diethylaminoethyl)methylamino methyl]-6-salicylidene) -1,2-cyclohexanediamine的IR圖--46 圖2-9 N,N’-bis(4-bromo-2-[(2-diethylaminoethyl)methylamino methyl]-6-salicylidene) -1,2-cyclohexanediamine Co(II)的 IR圖-------------------------------------------------------------------46 圖 2-10 不鏽鋼高壓反應器分解圖----------------------------------------47 圖 3-1 聚合物的核磁共振光譜圖-----------------------------------------48 圖 3-2 4-甲基五員環狀碳酸酯的核磁共振光譜圖---------------------49 圖 3-3 4-氯甲基五員環狀碳酸酯的核磁共振光譜圖------------------50 圖 3-4 4-甲基五員環狀碳酸酯的紅外線光圖譜------------------------51 圖 3-5 4-氯甲基五員環狀碳酸酯的紅外線光圖譜---------------------51 圖 3-6 環氧丙烷催化反應中不同的有機鹼催化劑在各促進劑存在 下對產物倍率的作圖-----------------------------------------------52 圖 3-7 環氧氯丙烷催化反應中不同的有機鹼催化劑在各促進劑存 在下對產物倍率的作圖--------------------------------------------52 圖 3-8 Nguyen所推測的雙核反應機構---------------------------------53 圖 3-9 Shi Min所推測的單核催化反應機構--------------------------53 圖 3-10 Darensbourg所推測的雙核催化反應機構--------------------54 圖3-11 環氧丙烷催化反應中以不同的壓力對各有機鹼催化劑存在 下得到的TOF作圖-------------------------------------------------59 圖3-12 環氧丙烷催化反應中不同的反應時間對Et3N催化劑參與及 Cr(III)salen存在與否,所得到的產率作圖----------------------60

1. Emmett﹐P.H. Catalysis﹐Vol.1~7﹐Reinhold Pub.Corp.﹐New York﹐1954~1960.
2. D.L. Trimm﹐Design of Industrial Catalysts﹐Elsevier Scientific Pub.Co.﹐Amsterdam﹐1980.
3. Anderson, J. R.; Boudart, M. Catalysis﹐Science and Technology﹐Vol.5﹐Springer-Verlag.Berlin﹐1984.
4.觸媒的原理與應用,胡興中編譯。
5.Yin, X.; Moss, J. R. Coord. Chem. Rev. 1999, 181, 27–59.
6. Gibson, D. H. Chem. Rev.. 1996, 96, 2063-2095.
7. Leitner, W. Coord. Chem. Rev. 1996, 155, 257-284.
8.藍啟仁,台電工程月刊,第572期85(4),42。
9. Jean, F.; Christian, B.; Pierre, H. D.; Serge, L. J. Org. Chem. 1991,
56, 4456-4458.
10. Takeshi, I.; Nobuhiro, K.; Takeshi, E. Bull. Chem. Soc. Jpn. 2000, 73.
713-719.
11. Mahmut, A.; Jun, C. C.; Toshiyasu, S. Chem. Commun. 2001, 2238-
2239.
12. Annis, D. A.; Jacobsen, E. N. J. Am. Chem. Soc. 1999, 121, 4147-
4154.
13. Biggadike, K.; Angell, R. M.; Burges, C. M.; Farrell, R. M.; Hancock,
A. P.; Harker, A. J.; Irving, A. J.; Irving, W. R.; Ioannou, C.;
Procopiou, P. A.; Shaw, R. E.; Solanke, Y. E.; Walton, S.; Weston, H.
E. J. Med. Chem. 2000, 43, 19-21.
14. Fujita, S. I.; Arai, M. Journal of the Japan Petroleum Institute, 2005,
48(2), 67.
15. Sacco, A.; Reid, R. C. Carbon 17 (1979) 459.
16. 科學發展 2002年11月,359期 談駿嵩撰
17. Menachem, M.; Yaron, R. H.; Jose, C. M.; Aharon,, G. J. Am. Chem.
Soc. 2001, 123, 8624-8625.
18. Zhengsong, L.; Qianwang, C.; Yufeng, Z.; Wei, W.; Yitai, Q. J. Am.
Chem. Soc. 2003, 125, 9302-9303.
19. Shaikh, A. A. G.; Sivaram, S. Chem. Rev. 1996, 96, 951.
20. Eberhardt, R.; Allmendinger, M.; Rieger, B., Macromol. Rapid
Commun. 2003, 24, 194-196.
21. Srivastava, R.; Srinivas, D.; Ratnasamy, P. Catal. Lett. 2003, 89,
81-85.
22. Darensbourg, D. J.; Holtcamp, M. W. Coord. Chem. Rev. 1996, 153,
155–174.
23. Shen, Y. M.; Duan, W. L.; Shi, M. J. Org. Chem. 2003, 68, 1559-
1562.
24. Yano, T.; Matsui, H.; Koike, T.; Ishiguro, H.; Fujihara, H.; Maeshima,
T.; Yoshihara, M. Chem. Commnu. 1997, 1129-1130.
25. Yamaguchi, K.; Ebitani, K.; Yoshida, T.; Yoshida, H.; Kaneda, K. J.
Am. Chem. Soc. 1999, 121, 4526-4527.
26. Kawanami, H.; Sasaki, A.; Matsui, K.; Ikushima, Y. Chem. Commun.
2003, 896-897.
27. Luinstra, G. A.; Haas, G. R.; Molnar, F.; Bernhart, V.; Eberhardt, R.;
Riger, B. Chem. Eur. J. 2005, 11, 6298-6314.
28. Lu, X. B.; Liang, B.; Zhang, Y. J.; Tian, Y. Z.; Wang, Y. M.; Bai, C.
X.; Wang, H.; Zhang, R. J. Am. Chem. Soc. 2004, 126, 3732-3733.
29. Qin, Z.; Thomas, C. M.; Lee, S.; Coates, G. W. Angew. Chem. Int. Ed.
2003, 42, 5484-5487.
30. Kawanami, H.; Ikushima, Y. Chem. Commun. 2000, 2089-2090.
31. Barbarini, A.; Magi, R.; Mazzacani, A.; Mori, G.; Sartori, G., Sartorio,
R. Tetrahedron. Letters. 2003, 44, 2931-2934.
32. Paddock, R. L.; Nguyen, S. T. J. Am. Chem. Soc. 2001, 123, 11498-
11499.
33. Darensbourg, D. J.; Yarbrough, J. C. J. Am. Chem. Soc. 2002, 124,
6335-6342.
34. Belokon, Y. N.; Fuentes, J.; North, M.; Steed, J. W. Tetrahedron.
2004, 60, 3191-3204.
35. Maurya, M. R.; Titinchi, S. J. J.; Chand, S. Applied Catalysis A:
General 2002, 228, 177.
36. Nielsen, Lars P. C.; Stevenson, C. P.; Blackmond, D. G.; Jacobsen,
E. N. J. Am. Chem. Soc. 2004, 126, 1360-1362.
37. Crane, J. D.; Fenton, D. E.; Latour, J. M.; Smith, A. J. J. Chem.Soc.
Dalton trans. 1991, 2979-2987.
38. Chapman, J. J.; Day, C. S.; Welker, M. E. Organometallics 2000, 9,
1615-1618.
39. Wang, J. T.; Shu, D.; Xiao, M.; J. Appl. Polym. Sci. 2006, 200-206
40. Darensbourg, D. J.; Mackiewicz, A. L.; Phelps, A. L.; Billodeaux, D.
R. Acc. Chem. Res. 2004, 37, 836-844.
41. Martinez, L. E.; Leighton, J. L.; Carsten, D. H.; Jacobsen, E. N. J.
Am. Chem. Soc. 1995, 117, 5897-5898.
42. Darensbourg, D. J.; Mackiewicz, R. M. J. Am. Chem. Soc. 2005, 127,
14026-14038.
43. Shen, Y. M.; Duan, W. L.; Shi, M. Adv. Synth. Catal. 2003, 345, 337
-340.
44. Shen, Y. M.; Duan, W. L.; Shi, M. Eur. J. Org. Chem. 2004, 3080-
3089.
45.中正大學碩士論文,陳泓伯
46.中央大學碩士論文,劉信志
47.文化大學碩士論文,張鈞凱
48. Scriven, E. F. Chem. Soc. Rev. 1983, 12, 129.
49. Paddock, R. L.; Hiyama, Y.; Mckay, J. M.; Nguyen, S. T. Tetrahedron
Letters, 2004, 45, 2023-2026.
50. Jacobsen, E. N.; Kakiuchi, F.; Konsler, R. G.; Larrow, J. F.;
Tokunaga, M. Tetrahedron Letters, 1997, 38, 773-776.
51. Jacobsen, E. N. Acc. Chem. Res. 2000, 33, 421-431.
52. Paddock, R. L.; Nguyen, S. T. Chem. Commun. 2004, 1622-1623.
53. Darensbourg, D. J.; Ganguly, P. Organometallics 2004, 23, 6025-
6030.
54. Perez, E. R.; Silva, M. O.; Costa, V. C.; Rodrigues-Filho, U. P.; Fraco,
D. W. Tetrahedron Letters, 2002, 43, 4091-4093.

無法下載圖示 本全文未授權公開
QR CODE