簡易檢索 / 詳目顯示

研究生: 夏德耀
Hsia, Te-Yao
論文名稱: 添加奈米石墨烯齒輪油於四行程機車引擎性能與廢氣排放影響之研究
The Effects of Adding Nano Graphene Gear Oil on Performance and Exhaust Emissions of Four-Stroke Motorcycle Engine
指導教授: 呂有豐
Lue, Yeou-Feng
口試委員: 莫懷恩
Mo, Huai-En
鄧敦平
Teng, Tun-Ping
呂有豐
Lue, Yeou-Feng
口試日期: 2021/07/05
學位類別: 碩士
Master
系所名稱: 工業教育學系
Department of Industrial Education
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 122
中文關鍵詞: 奈米石墨烯齒輪油(NGGO)黏度試驗磨潤試驗粒狀汙染物(PM)排放廢氣汙染排放
英文關鍵詞: Nano graphene gear oil, Viscosity, Tribology, Particulate matter emissions, Exhaust emissions
研究方法: 實驗設計法
DOI URL: http://doi.org/10.6345/NTNU202200617
論文種類: 學術論文
相關次數: 點閱:70下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究將改質石墨烯(Gr)作為利用二階合成法添加於原廠齒輪油中製備成NGGO,冀望NGGO獲得Gr所具備之特性,藉以優化原廠齒輪油性能。為探討添加Gr是否有效優化原廠齒輪油,將NGGO進行基礎試驗與實車試驗。基礎試驗包括沉降、黏度、比熱、導熱及磨潤試驗;實車試驗包含ECE-40、定速(50 km/h)、平路與爬坡試驗,於車輛運行過程中量測其能源效率、各點元件溫度、汙染排放與車速扭矩。本研究NGGO製備比例為0.005、0.01、0.02、0.03、0.05、0.1、0.2、0.3、0.4及0.5 wt.%,經過基礎試驗評比0.03 wt.%為最佳濃度,與原油相比在黏度試驗中改善12.66 %、導熱係數提升5 %、磨潤試驗耗損量改善10.17 %。將0.03 wt.%分別添加油酸(OA)或真空試驗後發現皆無明顯改善NGGO性質。於實車試驗中,ECE-40及定速行車型態測試,平均能源效率改善6.22 %、齒輪油溫度平均下降15.90 %,因動力輸出改善使引擎燃燒更加完善,導致燃燒室周圍元件(火星塞及排氣管內外側)溫度上升。添加NGGO之車輛有效改善HC及CO排放,單趟ECE-40平均分別減少40.48 %及8.64 %,PM排放也因燃燒完全而下降,總數平均下降40.61 %。平路試驗NGGO相較於原廠齒輪油減少40 s達到穩定車速,整體行駛扭矩也較平穩。

    The research is using graphene(Gr) as an additive material to mix with the original gear oil to be nano graphene gear oil(NGGO), and study the performance of basic properties and vehicle test between NGGO and original gear oil via adding dispersant OA to NGGO or vacuum test. The basic property test includes sedimentation, viscosity, specific heat, heat conduction and tribology test, vehicle test includes ECE-40, constant speed (50 km/h), flat road and climbing test, and measure the energy efficiency, temperature of specified parts, exhaust emissions, torque and speed during the vehicle running. The concentration of NGGO include 0.005, 0.01, 0.02, 0.03, 0.05, 0.1, 0.2, 0.3, 0.4 and 0.5 wt. %. After basic test, 0.03 wt. % was the best choice concentration. Compared with base oil, test results show that the dynamic viscosity improved by 12.66 %, the thermal conductivity increased by 5 %, and the wear test loss was improved by 10.17 %. After adding 0.03 wt.% to OA or vacuum test, it was found that there was no significant improvement in the properties of NGGO. In the vehicle test, ECE-40 and constant speed state test, the average energy efficiency has improved up to 6.22 %, and the gear oil temperature has dropped down by an average of 15.90 %. Due to the improved power output, the engine combustion is more perfect, which causes the temperature of the components around the combustion chamber (the spark plug and the inside and outside of the exhaust pipe) to rise. The vehicles added with NGGO can effectively improve HC and CO emissions. A single-trip of ECE-40 reduces 40.48 % and 8.64 % on average; PM emissions are also reduced due to complete combustion, with a total reduction of 28.86 % on average.NGGO compared with the original gear oil in flat road test, NGGO reduced 40 sec to achieve stable vehicle speed, and all of vehicle torque was stable.

    謝誌 i 摘要 ii Abstract iii 目錄 v 圖次 viii 表次 xii 第一章 緒論 1 1.1 前言 1 1.2 研究動機 2 1.3 研究目的 4 1.4 研究方法 4 1.5 論文架構 6 第二章 相關理論與分析 7 2.1 潤滑與齒輪 7 2.1.1 機械效率之影響 7 2.1.2 齒輪壽命之影響 8 2.1.3 齒輪損耗之影響 8 2.1.4 齒輪動力學之影響 9 2.1.5 潤滑與齒輪之衝突 9 2.2 奈米流體 10 2.2.1 奈米流體製備 10 2.2.2 流變性能 11 2.2.3 熱物理性質相關 12 2.2.4 磨潤性能 13 2.3 石墨烯、齒輪油、石墨烯奈米流體相關研究 13 2.3.1 石墨烯 (graphene, Gr) 13 2.3.2 齒輪油 14 2.3.3 石墨烯奈米流體 15 2.4 車輛汙染排放 15 2.4.1 PM排放 15 2.4.2 廢氣排放 16 2.5 機車性能檢測方式 17 2.5.1 燃油能源效率 17 2.5.2 廢氣檢測 21 第三章 實驗方法與裝置 23 3.1 Gr檢測 24 3.1.1 Gr成分檢測 24 3.1.2 Gr外觀檢測 25 3.2 NGGO製備 28 3.2.1 製備方法與比例 28 3.3 NGGO性質量測 37 3.3.1 沉降試驗 37 3.3.2 黏度量測試驗 37 3.3.3 比熱量測試驗 42 3.3.4 導熱量測試驗 47 3.3.5 磨潤試驗 51 3.4 NGGO實車試驗 57 第四章 實驗結果與討論 69 4.1 Gr外觀性質檢測結果 69 4.2 NGGO基礎性質量測 70 4.2.1 沉降試驗 70 4.2.2 黏度試驗 71 4.2.3 比熱試驗 75 4.2.4 導熱試驗 78 4.2.5 磨潤試驗 81 4.2.6 綜合評比 87 4.3 實車試驗 89 4.3.1 試驗環境 89 4.3.2 行車型態車速 90 4.3.3 能源效率 94 4.3.4 各點元件溫度 96 4.3.5 汙染排放 99 4.3.6 車輛扭矩 103 第五章 結論與建議 105 5.1 結論 105 5.2 後續研究與建議 107 參考文獻 109 符號釋義 121

    [1] 元氣網,全球染疫死亡病例—研究:15%與空污有關,取自:https://health.udn.com/health/story/120951/4967277,2020年。
    [2] 中華民國行政院,國情簡介環保政策,取自https://www.ey.gov.tw/index/,2019年。
    [3] 劉育潁,”生質柴油排放氣膠微粒之多環芳香烴及毒性研究”。生活科學學報,14,21-42,生活科學系,國立空中大學,臺灣,2010年。
    [4] 行政院環境保護署,環保署公布全國各類汙染源PM2.5排放量,取自https://www.epa.gov.tw/,2015年。
    [5] 張艮輝,陳杜甫、蔡長佑,”PM2.5減量討站與空氣品質再升級”。中華技術,30-32,34-45,臺灣,2016年。
    [6] 台南市環境保護局,細懸浮微粒與防治策略,取自https://web.tainan.gov.tw/epb/,2019年。
    [7] 行政院衛生福利部,國人死因統計結果,取自https://www.mohw.gov.tw/mp-1.html,2020年。
    [8] 行政院環境護保署,空氣品質維護資訊網,取自https://air.epa.gov.tw/,2019年。
    [9] 行政院環境保護署,溫室氣體排放統計,取自https://www.epa.gov.tw/,2019年。
    [10] 交通部公路總局,統計查詢網,取自https://www.thb.gov.tw/,2019年。
    [11] 余志生,汽車理論。機械工業出版社,中國,2019年。
    [12] M. Hammami, C. M. Fernandes, R. Martins, M. S. Abbes, M. Haddar and J. Seabra, “Torque loss in FZG-A10 gears lubricated with axle oils”, Tribology International, Vol 131, pp. 112-127, 2019.
    [13] 中華民國行政院,建設國家5大施政目標,取自https://www.ey.gov.tw/index/,2017年。
    [14] 行政院交通部,交通統計月報— 機動車輛登記數按燃料別分,取自https://www.motc.gov.tw/ch/index.jsp,2021年。
    [15] S. U. S. Choi, D. A. Singer and H. P. Wang, “Developments and Applications of Non-Newtonian Flows”, Asme Fed, 66, 99-105, 1995.
    [16] M. H. Ahmadi, A. Mirlohi, M. A. Nazari, and R. Ghasempour, “A review of thermal conductivity of various nanofluids”, Journal of Molecular Liquids, Vol.265, pp.181-188, 2018.
    [17] H. Liu, H. Liu, C. Zhu and R. G. Parker, “Effects of lubrication on gear performance: A review”, Mechanism and Machine Theory, Vol. 145, 103701, 2020.
    [18] P. M. Marques, C. M. Fernandes, R. C. Martins and J. H. Seabra, “Efficiency of a gearbox lubricated with wind turbine gear oils”, Tribology International, Vol. 71, pp. 7-16, 2014.
    [19] B. R. Höhn, and K. Michaellis, “Influence of lubricant ageing on gear performance”, Materiały, 2, pp. 363, 2001.
    [20] T. L. Krantz and A. Kahraman, “An experimental investigation of the influence of the lubricant viscosity and additives on gear wear”, Tribology Transactions, 47(1), pp. 138-148, 2004.
    [21] K. F. Brethee, D. Zhen, F. Gu and A. D. Ball, “Helical gear wear monitoring: Modelling and experimental validation”, Mechanism and Machine Theory, Vol. 117, pp. 210-229, 2017.
    [22] H. Liu, C. Zhu, Z. Sun and C. Song, “Starved lubrication of a spur gear pair”, Tribology International, Vol. 94, pp. 52-60, 2016.
    [23] W. Khalil, A. Mohamed, M. Bayoumi, and T. A. Osman, “Tribological properties of dispersed carbon nanotubes in lubricant”, Fullerenes Nanotubes and Carbon Nanostructures, Vol. 24, 7, 2, pp. 479-485, 2016.
    [24] T. Ouyang, N. Chen, J. Huang and H. Huang, “Analysis of lubricating performance for spur gear pairs applying tribo-dynamic model”, Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, vol. 230, 10, pp. 1244-1257, 2016.
    [25] T. H. Pham, J. Weber, L. Müller and D. T. Nguyen, “Numerical and experimental analysis of hybrid lubrication regime for internal gear motor and pump”, Journal of Mechanical Science and Technology, vol. 33, pp. 4689-4699, 2019.
    [26] A. Fernandez-del-Rincon, A. Diez-Ibarbia, M. Iglesias, and F. Viadero, “Gear rattle dynamics: Lubricant force formulation analysis on stationary conditions”, Mechanism and Machine Theory, vol. 142, 103581, 2019.
    [27] P. Velex and V. Cahouet, “Experimental and numerical investigations on the influence of tooth friction in spur and helical gear dynamics”, J. Mech. Des., vol. 122, 4, pp. 515-522, 2000.
    [28] M. Mohammadpour, S. Theodossiades, and H. Rahnejat, “Dynamics and efficiency of planetary gear sets for hybrid powertrains”, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, vol. 230, 7-8, pp. 1359-1368, 2016.
    [29] T. Zhang, Q. Zou, Z. Cheng, Z. Chen, Y. Liu and Z. Jiang, “Effect of particle concentration on the stability of water-based SiO2 nanofluid”, Powder Technology, vol. 379, pp. 457-465, 2021.
    [30] A. Asadi, S. Aberoumand, A. Moradikazerouni, F. Pourfattah, G. Żyła, P. Estellé, ... and A. Arabkoohsar, “Recent advances in preparation methods and thermophysical properties of oil-based nanofluids: A state-of-the-art review”, Powder Technology, vol. 352, pp. 209-226, 2019.
    [31] N. A. C. Sidik, M. M. Jamil, W. M. A. A. Japar, and I. M. Adamu, “A review on preparation methods, stability and applications of hybrid nanofluids”, Renewable and Sustainable Energy Reviews, vol. 80, pp. 1112-1122, 2017.
    [32] M. T. Jamal-Abad, A. Zamzamian and M. Dehghan, “Experimental studies on the heat transfer and pressure drop characteristics of Cu–water and Al–water nanofluids in a spiral coil”, Experimental Thermal and Fluid Science, vol. 47, pp. 206-212, 2013.
    [33] H. Ahmadi, A. Rashidi, A. Nouralishahi and S. S. Mohtasebi, “Preparation and thermal properties of oil-based nanofluid from multi-walled carbon nanotubes and engine oil as nano-lubricant”, International Communications in Heat and Mass Transfer, vol. 46, pp. 142-147, 2013.
    [34] M. Asadi and A. Asadi, “Dynamic viscosity of MWCNT/ZnO–engine oil hybrid nanofluid: An experimental investigation and new correlation in different temperatures and solid concentrations”, International Communications in Heat and Mass Transfer, vol. 76, pp. 41-45, 2016.
    [35] A. Alirezaie, S. Saedodin, M. H. Esfe and S. H. Rostamian, “Investigation of rheological behavior of MWCNT (COOH-functionalized)/MgO - Engine oil hybrid nanofluids and modelling the results with artificial neural networks”, Journal of Molecular Liquids, vol. 241, pp. 173-181, 2017.
    [36] M. Afrand, K. N. Najafabadi and M. Akbari, “Effects of temperature and solid volume fraction on viscosity of SiO2-MWCNTs/SAE40 hybrid nanofluid as a coolant and lubricant in heat engines”, Applied Thermal Engineering, vol. 102, pp. 45-54, 2016.
    [37] M. H. Esfe, M. Afrand, W. M. Yan, H. Yarmand, D. Toghraie and M. Dahari, “Effects of temperature and concentration on rheological behavior of MWCNTs/SiO2(20–80)-SAE40 hybrid nano-lubricant”, International Communications in Heat and Mass Transfer, vol. 76, pp. 133-138, 2016.
    [38] M. Gupta, V. Singh, R. Kumar and Z. Said, “A review on thermophysical properties of nanofluids and heat transfer applications”, Renewable and Sustainable Energy Reviews, vol. 74, pp. 638-670, 2017.
    [39] M. M. Tawfik, “Experimental studies of nanofluid thermal conductivity enhancement and applications: A review”, Renewable and Sustainable Energy Reviews, vol. 75, pp. 1239-1253, 2017.
    [40] I. Carrillo-Berdugo, R. Grau-Crespo, D. Zorrilla and J. Navas, “Interfacial molecular layering enhances specific heat of nanofluids: Evidence from molecular dynamics”, Journal of Molecular Liquids, vol. 325, 115217, 2021.
    [41] Z. Bao, N. Bing, X. Zhu, H. Xie and W. Yu, “Ti3C2Tx MXene contained nanofluids with high thermal conductivity, super colloidal stability and low viscosity”, Chemical Engineering Journal, vol. 406, 126390, 2021.
    [42] M. Huo, H. Wu, H. Xie, J. Zhao, G. Su, F. Jia, ... and Z. Jiang, “Understanding the role of water-based nanolubricants in micro flexible rolling of aluminium”, Tribology International, vol. 151, 106378, 2020.
    [43] R. L. Virdi, S. S. Chatha and H. Singh, “Experimental investigations on the tribological and lubrication behaviour of minimum quantity lubrication technique in grinding of Inconel 718 alloy”, Tribology International, vol. 153, 106581, 2021.
    [44] A. Kotia, G. K. Ghosh, I. Srivastava, P. Deval and S. K. Ghosh, “Mechanism for improvement of friction/wear by using Al2O3 and SiO2/Gear oil nanolubricants”, Journal of Alloys and Compounds, vol 782, pp. 592-599, 2019.
    [45] A. Kotia, K. Chowdary, I. Srivastava, S. K. Ghosh and M. K. A. Ali, “Carbon nanomaterials as friction modifiers in automotive engines: Recent progress and perspectives”, Journal of Molecular Liquids, vol. 310, 113200, 2020.
    [46] Y. Liu, X. Ge and J. Li, “Graphene lubrication”, Applied Materials Today, vol. 20, 100662, 2020.
    [47] D. Berman, A. Erdemir and A. V. Sumant, “Graphene: a new emerging lubricant”, Materials Today, vol. 17, Issue 1, pp. 31-42, 2014.
    [48] P. Kumar and M. F. Wani, “Synthesis and tribological properties of graphene: A review”, Jurnal Tribologi, vol. 13, pp. 36-71, 2017.
    [49] Y. Peng, Z. Wang and C. Li, “Study of nanotribological properties of multilayer graphene by calibrated atomic force microscopy”, Nanotechnology, vol. 25, 2014.
    [50] S. S. K. Kiu, S. Yusup, C. V. Soon, T. Arpin, S. Samion and R. N. M. Kamil, “Tribological investigation of graphene as lubricant additive in vegetable oil”, Journal of Physical Science, vol. 28, pp. 257, 2017.
    [51] M. Hammami, N. Rodrigues, C. Fernandes, R. Martins, J. Seabra, M. S. Abbes and M. Haddar, “Axle gear oils: Friction, wear and tribofilm generation under boundary lubrication regime”, Tribology International, vol. 114, pp. 88-108, 2017.
    [52] A. Saxena, S. Gangwar, G. K. Ghosh, R. K. Patel and V. Chaudhary, “Rheological properties analysis of MWCNT / graphene hybrid-gear oil (SAE EP-90) nanolubricants”, Materials Today: Proceedings, vol. 33, pp. 5313-5316, 2020.
    [53] C. Zhou and Z. Xiao, “Stiffness and damping models for the oil film in line contact elastohydrodynamic lubrication and applications in the gear drive”, Applied Mathematical Modelling, vol. 61, pp. 634-649, 2018.
    [54] X. Wang, Y. Zhang, Z. Yin, Y. Su, Y. Zhang and J. Cao, “Experimental research on tribological properties of liquid phase exfoliated graphene as an additive in SAE 10W-30 lubricating oil”, Tribology International, vol. 135, pp. 29-37, 2019.
    [55] S. Q. Liu, Z. R. Chen, Q. N. Meng, H. L. Zhou, C. Li and Baochang Liu, “Effect of Graphene and Graphene Oxide Addition on Lubricating and Friction Properties of Drilling Fluids”, Nanoscience and Nanotechnology Letters, vol. 9, 4, pp. 446-452(7), 2017.
    [56] M. Li, T. Yu, R. Zhang, L. Yang, Z. Ma, B. Li, ... and J. Zhao, “Experimental evaluation of an eco-friendly grinding process combining minimum quantity lubrication and graphene-enhanced plant-oil-based cutting fluid”, Journal of Cleaner Production, vol. 244, 118747, 2020.
    [57] V. Martins, C. Correia, I. Cunha-Lopes, T. Faria, E. Diapouli, M. I. Manousakas, ... and S. M. Almeida, “Chemical characterisation of particulate matter in urban transport modes”, Journal of Environmental Sciences, vol. 100, pp. 51-61, 2021.
    [58] H. Wihersaari, L. Pirjola, P. Karjalainen, E. Saukko, H. Kuuluvainen, K. Kulmala, ... and T. Rönkkö, “Particulate emissions of a modern diesel passenger car under laboratory and real-world transient driving conditions”, Environmental Pollution, vol. 265, 114948, 2020.
    [59] Z. Hu, Z. Lu, B. Song, and Y. Quan, “Impact of test cycle on mass, number and particle size distribution of particulates emitted from gasoline direct injection vehicles”, Science of The Total Environment, vol. 762, 143128, 2021.
    [60] Y. Q. Pei, J. Qin and S. Z. Pan, “Experimental study on the particulate matter emission characteristics for a direct-injection gasoline engine”, Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, vol. 228, 6, pp. 604-616, 2014.
    [61] Y. Qian, Z. Li, L. Yu, X. Wang and X. Lu, “Review of the state-of-the-art of particulate matter emissions from modern gasoline fueled engines”, Applied Energy, vol. 238, pp. 1269-1298, 2019.
    [62] K. Choi, J. Kim, A. Ko, C. L. Myung, S. Park, Y. Lee, ... and S. K. Han, “Evaluation of Time-Resolved Nano-Particle and THC Emissions of Wall-Guided GDI Engine”, In SAE Technical Papers, 2011.
    [63] D. OudeNijeweme, P. Freeland, M. Behringer and P. Aleiferis, "Developing Low Gasoline Particulate Emission Engines Through Improved Fuel Delivery", SAE Technical Paper, (No. 2014-01-2843), 2014.
    [64] K. Shen, H. Chen, Z. Zhang, B. Wang and Y. Wang, “Experimental study on the effects of exhaust heat recovery system (EHRS) on vehicle fuel economy and emissions under cold start new European driving cycle (NEDC)”, Energy Conversion and Management, vol. 197, 111893, 2019.
    [65] T. Banerjee and R. A. Christian, “Effect of operating conditions and speed on nanoparticle emission from diesel and gasoline driven light duty vehicles”, Atmospheric Pollution Research, vol. 10, 6, pp. 1852-1865, 2019.
    [66] M. A. Costagliola, F. Murena and M. V. Prati, “Exhaust emissions of volatile organic compounds of powered two-wheelers: Effect of cold start and vehicle speed. Contribution to greenhouse effect and tropospheric ozone formation”, Science of The Total Environment, vol. 468–469, pp. 1043-1049, 2014.
    [67] S. M. S. Ardebili, H. Solmaz, A. Calam and D. İpci, “Modelling of performance, emission, and combustion of an HCCI engine fueled with fusel oil-diethylether fuel blends as a renewable fuel”, Fuel, vol. 290, 120017, 2021.
    [68] M. V. Faria, R. A. Varella, G. O. Duarte, T. L. Farias and P. C. Baptista, “Engine cold start analysis using naturalistic driving data: City level impacts on local pollutants emissions and energy consumption”, Science of The Total Environment, vol. 630, pp. 544-559, 2018.
    [69] J. Fu, B. Deng, X. Liu, J. Shu, Y. Xu and J. Liu, “The experimental study on transient emissions and engine behaviors of a sporting motorcycle under World Motorcycle Test Cycle”, Energy, vol. 211, 118670, 2020.
    [70] 行政院經濟部標準檢驗局,標準總號:CNS3105,取自:https://www.cnsonline.com.tw/,2009年。
    [71] 行政院環境保護署,機車燃料消耗量試驗方法,取自https://www.epa.gov.tw/,2017年。
    [72] 行政院經濟部能源局,車輛能耗研究網站—能源效率測試資料閱讀說明,取自:https://auto.itri.org.tw/index.aspx,2021年。
    [73] 行政院法務部,全國法規資料庫—車輛容許耗用能源標準級檢查管理辦法,取自:https://law.moj.gov.tw/Index.aspx,2021年。
    [74] 行政院經濟部能源局,車輛油耗指南,取自:https://auto.itri.org.tw/index.aspx,2019年。
    [75] 行政院環境保護署,主管法規查詢系統—機車廢氣排放污染測試方法及程序,取自:https://oaout.epa.gov.tw/law/index.aspx,2019年。
    [76] M. K. A. Ali, H. Xianjun, M. A. Abdelkareem, M. Gulzar and A. H. Elsheikh, “Novel approach of the graphene nanolubricant for energy saving via anti-friction/wear in automobile engines”, Tribology International, vol. 124, pp. 209-229, 2018.
    [77] J. Huang, J. Tan, H. Fang, F. Gong and J. Wang, Tribological and wear performances of graphene-oil nanofluid under industrial high-speed rotation, Tribology International, vol. 135, pp. 112-120, 2019.
    [78] A. M. M. Ibrahim, W. Li, H. Xiao, Z. Zeng, Y. Ren and M. S. Alsoufi, “Energy conservation and environmental sustainability during grinding operation of Ti–6Al–4V alloys via eco-friendly oil/graphene nano additive and Minimum quantity lubrication”, Tribology International, vol. 150, 106387, 2020.
    [79] P. Sati, R. C. Shende and S. Ramaprabhu, “An experimental study on thermal conductivity enhancement of DI water-EG based ZnO(CuO) / graphene wrapped carbon nanotubes nanofluids”, Thermochimica Acta, vol. 666, pp. 75-81, 2018.
    [80] S. S. N. Azman, N. W. M. Zulkifli, H. Masjuki, M. Gulzar and R. Zahid, “Study of tribological properties of lubricating oil blend added with graphene nanoplatelets”, Journal of Materials Research, vol. 31, 13, pp. 1932-1938, 2016.
    [81] X. X. Tian, R. Kalbasi, R. Jahanshahi, C. Qi, H. L. Huang and S. Rostami, “Competition between intermolecular forces of adhesion and cohesion in the presence of graphene nanoparticles: Investigation of graphene nanosheets/ethylene glycol surface tension”, Journal of Molecular Liquids, vol. 311, 113329, 2020.
    [82] 美國材料和試驗協會,ASTM首頁,取自:https://www.astm.org/。
    [83] ASTM G99-17, Standard Test Method for Wear Testing with a Pin-on-Disk Apparatus, 2017.
    [84] ASTM E178-16a, Standard Practice for Dealing With Outlying Observations, 2016.
    [85] ASTM G40-17, Standard Terminology Relating to Wear and Erosion, 2017.
    [86] A. K. Rasheed, M. Khalid, A. Javeed, W. Rashmi, T. C. S. M. Gupta and A. Chan, “Heat transfer and tribological performance of graphene nanolubricant in an internal combustion engine”, Tribology International, vol. 103, pp. 504-515, 2016.
    [87] G. K. Batchelor, “The effect of Brownian motion on the bulk stress in a suspension of spherical particles”, Journal of Fluid Mechanics, vol. 83, 1, 1977.
    [88] H. Riazi, T. Murphy, G. B. Webber, R. Atkin, S. S. M. Tehrani and R. A. Taylor, “Specific heat control of nanofluids: A critical review”, International Journal of Thermal Sciences, vol. 107, pp. 25-38, 2016.
    [89] A. K. Starace, J. C. Gomez, J. Wang, S. Pradhan and G. C. Glatzmaier, “Nanofluid heat capacities”, Journal of Applied Physics, 110, 124323, 2011.
    [90] S. Das, A. Giri, S. Samanta and S. Kanagaraj, “Role of graphene nanofluids on heat transfer enhancement in thermosyphon”, Journal of Science: Advanced Materials and Devices, vol. 4, 1, pp. 163-169, 2019.
    [91] J. Kogovšek and M. Kalin, “Lubrication performance of graphene-containing oil on steel and DLC-coated surfaces”, Tribology International, vol. 138, pp. 59-67, 2019.
    [92] L. Wang, S. Liu, J. Gou, Q. Zhang, F. Zhou, Y. Wang and R. Chu, “Study on the wear resistance of graphene modified nanostructured Al2O3/TiO2 coatings”, Applied Surface Science, vol. 492, pp. 272-279, 2019.
    [93] 中文維基百科,油酸,取自:http://zh.wikipedia.org/wiki/,2020年9月。
    [94] 台灣中油全球資訊網,汽油小常識,取自:https://www.cpc.com.tw/Default.aspx,2021年3月。

    下載圖示
    QR CODE