簡易檢索 / 詳目顯示

研究生: 洪詩婷
Hung, Shih-Ting
論文名稱: 製備高發光效率InP/ZnS核殼層量子點與研究其發光二極體的應用
Fabrication of High Luminous Efficacy InP/ZnS Core-Shell Quantum dots for Application to Light-Emitting Diodes
指導教授: 陳家俊
Chen, Chia-Chun
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 65
中文關鍵詞: 半導體量子點環境無害的磷化銦量子點
英文關鍵詞: Semiconductor quantum dots, environment-friendly InP quantum dot
DOI URL: https://doi.org/10.6345/NTNU202203708
論文種類: 學術論文
相關次數: 點閱:120下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 奈米等級尺寸之半導體量子點能階可隨粒徑大小與成分組成改變,其具有獨特之光學特性。然而過去以鎘(Cd)為主之量子點具有毒性,使其發展受到限制,尋找替代的物質是非常重要的研究。在所有可能的替代物質中,以磷化銦(InP)在光電特性的表現上最具希望,並在近年來的研究中慢慢地應用。在本篇論文中,首先我們將介紹對環境友善的磷化銦(InP)量子點的合成,我們將使用傳統的高溫注射法和無毒的前驅物P(TMS)3來進行合成,經由硫化鋅(ZnS)包覆在外層形成核殼層結構來提高磷化銦(InP)量子點的持久性,在過程中,我們會控制不同的成長溫度和前驅物的濃度來合成一系列的磷化銦(InP)量子點。磷化銦(InP)量子點發光二極體應用於照明為良好之光轉換發光材料,在論文中也會測試其耐熱性和成膜性。在耐熱性的部分我們將使用不同的溫度和時間來測試磷化銦(InP)量子點在發光二極體元件中適合的溫度,另外我們也會添加脂肪酸來增加磷化銦(InP)量子點在固態發光元件的成膜性。

    Semiconductor quantum dots (QDs), of which particle sizes are in the nanometer scale, have very unusual size-controllable optical properties.
    However, the well-developed Cadmium-based QDs are restricted in further application due to its acute toxicity, making it necessary to find the alternative materials. Among all the possible alternatives, indium phosphide(InP) shows promising in both optical and electric properties, which can be later introduced into application.
    The environment-friendly InP quantum dots (QDs) have been synthesized in this paper by the conventional hot injection method using a non-toxic precursor of P(TMS)3. To enhance the material durability, the InP would be covered by ZnS, forming the InP/ZnS core-shell structure. The carefully controlled syntheses of a series of InP/ZnS QDs were designed by varying the core-growth temperature and the concentrations of precursor.
    The environment-friendly InP/ZnS is set to have further application in electronic devices. Therefore, heat resistance and surface smoothness were also examined in our work. In the test of heat resistant, InP/ZnS quantum dots were annealed under different temperature and time, which shows possible to the light-emitting diodes (LEDs) converters. Over all, using fatty-acid as the surfactant, the InP/ZnS QDs have revealed the potential for the fabrication of solid-state lighting.

    謝誌 I Abstract II 中文摘要 III 總目錄 IV 圖目錄 VII 第一章 緒論 1 1-1 前言 1 1-2量子點介紹 2 1-2-1量子點特性 2 1-2-1-1表面效應 2 1-2-1-2 小尺寸效應 3 1-2-1-3量子效應 4 1-2-2量子點的生長理論 5 1-2-3 量子點的結構 6 1-2-3-1 核心結構(core structure) 6 1-2-3-2 量子點表面有機物 10 1-2-3-3核殼層半導體量子點 11 1-2-3-4Ⅱ-Ⅵ族,Ⅲ-Ⅴ族和Ⅰ-Ⅲ-Ⅵ族半導體量子點介紹 13 1-2-3-4-1Ⅱ-Ⅵ族量子點 13 1-2-3-4-2Ⅲ-Ⅴ族量子點 14 1-2-3-4-3Ⅰ-Ⅲ-Ⅵ族量子點 16 1-2-4 量子點的量子產率(Quantum Yield) 18 1-3量子點的應用 20 1-3-1量子點應用在發光二極體的波長轉換器 20 1-3-2電激發光元件應用 23 1-3-2-1可調控放射波長 24 1-3-2-2飽和的顏色 25 1-3-2-3穩定度 26 1-3-2-4液體成膜 26 1-3-3量子點在太陽能染料敏化電池的應用 28 1-3-4生物顯影應用 29 第二章 實驗設備與流程 31 2-1實驗設備 31 2-1-1螢光光譜儀(Photoluminescence,PL) 31 2-1-2可見光/紫外光/分光光譜儀(UV/Vis Spectrophotometer) 32 2-1-3穿透式電子顯微鏡(Transmission Electron Microscopy,TEM) 33 2-1-4掃描式電子顯微鏡(Scanning Electron Microscope,SEM) 35 2-1-5 X繞射(X-ray Diffraction,XRD) 36 2-1-6旋轉塗佈機(Spin coater) 37 2-2合成步驟 39 2-2-1藥品 39 2-2-2實驗流程 39 2-2-3實驗步驟 40 2-2-3-1磷前驅物準備 40 2-2-3-2疏水性 InP 量子點的合成 41 2-2-3-2疏水性核殼層InP/ZnS量子點的合成 42 2-2-3-3疏水性InP/ZnS量子點的純化 43 2-3實驗動機與目的 45 第三章結果與討論 46 3-1實驗目標 46 3-2材料特性之分析 47 3-2-1疏水性磷化铟/硫化鋅核殼層量子點的吸收與螢光光譜 47 3-2-2具可調控波長之疏水性磷化铟/硫化鋅核殼層量子點 48 3-2-3疏水性磷化铟/硫化鋅核殼層量子點性質探討 50 3-2-3疏水性磷化铟/硫化鋅核殼層量子點的耐熱性 53 3-3 InP/ZnS QDs作為發光二極體發光層的探討 55 3-3-1InP/ZnS QDs應用在發光二極體發光層的製作 55 3-3-2發光二極體發光層發光測試 59 未來展望 61 參考文獻 62

    (1)de Mello Donegá, C.; Liljeroth, P.; Vanmaekelbergh, D. Small 2005, 1, 1152.
    (2)Qu, L.; Yu, W. W.; Peng, X. Nano Letters 2004, 4, 465.
    (3)alapin, D. V.; Rogach, A. L.; Haase, M.; Weller, H. The Journal of Physical Chemistry B 2001, 105, 12278.
    (4)Puzder, A.; Williamson, A. J.; Zaitseva, N.; Galli, G.; Manna, L.; Alivisatos, A. P. Nano Letters 2004, 4, 2361.
    (5)Liu, H.; Owen, J. S.; Alivisatos, A. P. Journal of the American Chemical Society 2007, 129, 305.
    (6)Xie, R.; Li, Z.; Peng, X. Journal of the American Chemical Society 2009, 131, 15457.
    (7)Owen, J. S.; Chan, E. M.; Liu, H.; Alivisatos, A. P. Journal of the American Chemical Society 2010, 132, 18206.
    (8)LaMer, V. K.; Dinegar, R. H. Journal of the American Chemical Society 1950, 72, 4847.
    (9)Algar, W. R.; Susumu, K.; Delehanty, J. B.; Medintz, I. L. Analytical Chemistry 2011, 83, 8826.
    (10)Allen, P. M.; Liu, W.; Chauhan, V. P.; Lee, J.; Ting, A. Y.; Fukumura, D.; Jain, R. K.; Bawendi, M. G. Journal of the American Chemical Society 2010, 132, 470.
    (11)Colvin, V. L.; Goldstein, A. N.; Alivisatos, A. P. Journal of the American Chemical Society 1992, 114, 5221.
    (12)Murray, C. B.; Kagan, C. R.; Bawendi, M. G. Science 1995, 270, 1335.
    (13)Nosaka, Y.; Shigeno, H.; Ikeuchi, T. The Journal of Physical Chemistry 1995, 99, 8317.
    (14)Zheng, F.; Lu, L.; Linlin, X.; Xiaoguang, Y.; Xinhua, Z. Nanotechnology 2008, 19, 235603.
    (15)Acar, H. Y.; Kas, R.; Yurtsever, E.; Ozen, C.; Lieberwirth, I. The Journal of Physical Chemistry C 2009, 113, 10005.
    (16)Hinds, S.; Taft, B. J.; Levina, L.; Sukhovatkin, V.; Dooley, C. J.; Roy, M. D.; MacNeil, D. D.; Sargent, E. H.; Kelley, S. O. Journal of the American Chemical Society 2006, 128, 64.
    (17)Ma, N.; Dooley, C. J.; Kelley, S. O. Journal of the American Chemical Society 2006, 128, 12598.
    (18)Wei, S.-H.; Zunger, A. Applied Physics Letters 1998, 72, 2011.
    (19)Lim, J.; Bae, W. K.; Kwak, J.; Lee, S.; Lee, C.; Char, K. Opt. Mater. Express 2012, 2, 594.
    (20)Mahler, B.; Spinicelli, P.; Buil, S.; Quelin, X.; Hermier, J.-P.; Dubertret, B. Nat Mater 2008, 7, 659.
    (21)Kortan, A. R.; Hull, R.; Opila, R. L.; Bawendi, M. G.; Steigerwald, M. L.; Carroll, P. J.; Brus, L. E. Journal of the American Chemical Society 1990, 112, 1327.
    (22)Shen, S.; Wang, Q. Chemistry of Materials 2013, 25, 1166.
    (23)Omata, T.; Nose, K.; Otsuka-Yao-Matsuo, S. Journal of Applied Physics 2009, 105, 073106.
    (24)Rogach, A. L.; Kornowski, A.; Gao, M.; Eychmüller, A.; Weller, H. The Journal of Physical Chemistry B 1999, 103, 3065.
    (25)Gao, M.; Kirstein, S.; Möhwald, H.; Rogach, A. L.; Kornowski, A.; Eychmüller, A.; Weller, H. The Journal of Physical Chemistry B 1998, 102, 8360.
    (26)Rogach, A.; Kershaw, S. V.; Burt, M.; Harrison, M. T.; Kornowski, A.; Eychmüller, A.; Weller, H. Advanced Materials 1999, 11, 552.
    (27)Fang, Z.; Li, Y.; Zhang, H.; Zhong, X.; Zhu, L. The Journal of Physical Chemistry C 2009, 113, 14145.
    (28)Anikeeva, P. O.; Halpert, J. E.; Bawendi, M. G.; Bulović, V. Nano Letters 2009, 9, 2532.
    (29)Bailey, R. E.; Smith, A. M.; Nie, S. Physica E: Low-dimensional Systems and Nanostructures 2004, 25, 1.
    (30)Artemyev, M. V.; Woggon, U.; Wannemacher, R.; Jaschinski, H.; Langbein, W. Nano Letters 2001, 1, 309.
    (31)Bruchez, M.; Moronne, M.; Gin, P.; Weiss, S.; Alivisatos, A. P. Science 1998, 281, 2013.
    (32)Gaponik, N. P.; Talapin, D. V.; Rogach, A. L.; Eychmuller, A. Journal of Materials Chemistry 2000, 10, 2163.
    (33)Chan, W. C. W.; Nie, S. Science 1998, 281, 2016.
    (34)Michalet, X.; Pinaud, F. F.; Bentolila, L. A.; Tsay, J. M.; Doose, S.; Li, J. J.; Sundaresan, G.; Wu, A. M.; Gambhir, S. S.; Weiss, S. Science 2005, 307, 538.
    (35)Lim, J.; Bae, W. K.; Lee, D.; Nam, M. K.; Jung, J.; Lee, C.; Char, K.; Lee, S. Chemistry of Materials 2011, 23, 4459.
    (36)Blackburn, J. L.; Ellingson, R. J.; Mićić, O. I.; Nozik, A. J. The Journal of Physical Chemistry B 2003, 107, 102.
    (37)Talapin, D. V.; Gaponik, N.; Borchert, H.; Rogach, A. L.; Haase, M.; Weller, H. The Journal of Physical Chemistry B 2002, 106, 12659.
    (38)Mićić, O. I.; Sprague, J.; Lu, Z.; Nozik, A. J. Applied Physics Letters 1996, 68, 3150.
    (39)Yang, X.; Zhao, D.; Leck, K. S.; Tan, S. T.; Tang, Y. X.; Zhao, J.; Demir, H. V.; Sun, X. W. Advanced Materials 2012, 24, 4180.
    (40)Li, L.; Pandey, A.; Werder, D. J.; Khanal, B. P.; Pietryga, J. M.; Klimov, V. I. Journal of the American Chemical Society 2011, 133, 1176.
    (41)Zhong, H.; Wang, Z.; Bovero, E.; Lu, Z.; van Veggel, F. C. J. M.; Scholes, G. D. The Journal of Physical Chemistry C 2011, 115, 12396.
    (42)Mao, B.; Chuang, C.-H.; Wang, J.; Burda, C. The Journal of Physical Chemistry C 2011, 115, 8945.
    (43)Murray, C. B.; Norris, D. J.; Bawendi, M. G. Journal of the American Chemical Society 1993, 115, 8706.
    (44)van Sark, W. G. J. H. M.; Frederix, P. L. T. M.; Bol, A. A.; Gerritsen, H. C.; Meijerink, A. ChemPhysChem 2002, 3, 871.
    (45)Kimura, N.; Sakuma, K.; Hirafune, S.; Asano, K.; Hirosaki, N.; Xie, R.-J. Applied Physics Letters 2007, 90, 051109.
    (46)Lee, J.; Sundar, V. C.; Heine, J. R.; Bawendi, M. G.; Jensen, K. F. Advanced Materials 2000, 12, 1102.
    (47)Jang, H. S.; Yang, H.; Kim, S. W.; Han, J. Y.; Lee, S.-G.; Jeon, D. Y. Advanced Materials 2008, 20, 2696.
    (48)Wood, V.; Bulović, V. Nano Reviews 2010, 1, 10.3402/nano.v1i0.5202.
    (49)Song, W.-S.; Yang, H. Chemistry of Materials 2012, 24, 1961.
    (50)Song, W.-S.; Yang, H. Applied Physics Letters 2012, 100, 183104.
    (51)Shirasaki, Y.; Supran, G. J.; Bawendi, M. G.; Bulovic, V. Nat Photon 2013, 7, 13.
    (52)Hines, M. A.; Guyot-Sionnest, P. The Journal of Physical Chemistry 1996, 100, 468.
    (53)Sun, Q.; Wang, Y. A.; Li, L. S.; Wang, D.; Zhu, T.; Xu, J.; Yang, C.; Li, Y. Nat Photon 2007, 1, 717.
    (54)Cho, K.-S.; Lee, E. K.; Joo, W.-J.; Jang, E.; Kim, T.-H.; Lee, S. J.; Kwon, S.-J.; Han, J. Y.; Kim, B.-K.; Choi, B. L.; Kim, J. M. Nat Photon 2009, 3, 341.
    (55)Chen, B.; Zhong, H.; Zhang, W.; Tan, Z. a.; Li, Y.; Yu, C.; Zhai, T.; Bando, Y.; Yang, S.; Zou, B. Advanced Functional Materials 2012, 22, 2081.
    (56)Tan, Z.; Zhang, Y.; Xie, C.; Su, H.; Liu, J.; Zhang, C.; Dellas, N.; Mohney, S. E.; Wang, Y.; Wang, J.; Xu, J. Advanced Materials 2011, 23, 3553.
    (57)Zhang, Y.; Xie, C.; Su, H.; Liu, J.; Pickering, S.; Wang, Y.; Yu, W. W.; Wang, J.; Wang, Y.; Hahm, J.-i.; Dellas, N.; Mohney, S. E.; Xu, J. Nano Letters 2011, 11, 329.
    (58)O'Regan, B.; Gratzel, M. Nature 1991, 353, 737.
    (59)Gratzel, M. Nature 2001, 414, 338.
    (60)Vogel, R.; Hoyer, P.; Weller, H. The Journal of Physical Chemistry 1994, 98, 3183.
    (61)Jun, H. K.; Careem, M. A.; Arof, A. K. Renewable and Sustainable Energy Reviews 2013, 22, 148.
    (62)Dubertret, B.; Skourides, P.; Norris, D. J.; Noireaux, V.; Brivanlou, A. H.; Libchaber, A. Science 2002, 298, 1759.
    (63)Zhang, Y.; He, J.; Wang, P.-N.; Chen, J.-Y.; Lu, Z.-J.; Lu, D.-R.; Guo, J.; Wang, C.-C.; Yang, W.-L. Journal of the American Chemical Society 2006, 128, 13396.
    (64)Medintz, I. L.; Uyeda, H. T.; Goldman, E. R.; Mattoussi, H. Nat Mater 2005, 4, 435.
    (65)Bharali, D. J.; Lucey, D. W.; Jayakumar, H.; Pudavar, H. E.; Prasad, P. N. Journal of the American Chemical Society 2005, 127, 11364.
    (66)Yong, K.-T.; Ding, H.; Roy, I.; Law, W.-C.; Bergey, E. J.; Maitra, A.; Prasad, P. N. ACS Nano 2009, 3, 502.
    (67)Deng, D.; Chen, Y.; Cao, J.; Tian, J.; Qian, Z.; Achilefu, S.; Gu, Y. Chemistry of Materials 2012, 24, 3029.

    無法下載圖示 本全文未授權公開
    QR CODE