Author: |
王咸捷 |
---|---|
Thesis Title: |
超薄膜鈷/銥(111)的表面結構研究 |
Advisor: | 蔡志申 |
Degree: |
碩士 Master |
Department: |
物理學系 Department of Physics |
Thesis Publication Year: | 2016 |
Academic Year: | 104 |
Language: | 中文 |
Number of pages: | 183 |
Keywords (in Chinese): | 超薄膜 、薄膜磁性 、薄膜結構 、鈷 、銥( (111) 、歐傑電子能譜 、低能電子繞射 、磁光科爾效應 |
DOI URL: | https://doi.org/10.6345/NTNU202204767 |
Thesis Type: | Academic thesis/ dissertation |
Reference times: | Clicks: 87 Downloads: 0 |
Share: |
School Collection Retrieve National Library Collection Retrieve Error Report |
在Co/Ir(111)系統中,鈷薄膜在2至6個原子層之間,其平行方向的原子間距d//和垂直膜面上的原子間距d_⊥因應力影響有所變化,導致結構趨於破碎,最終超過8個原子層後產生超順磁的現象。石墨烯插層對於Co/Ir(111)系統影響很大,在鈷薄膜為1.33層以內是量測不到磁滯曲線,當鈷薄膜成長到2.66至3.99個原子層時,鈷薄膜受石墨烯介面影響呈現垂直磁化系統,但與Co/Ir(111)系統最大的不同在於,當鈷薄膜在大於3.99個層之後,未有超順磁現象產生,此時磁異向性由磁晶異向性改為形狀異向性主導,發生自旋取向相變(spin reorientation transition,SRT),磁化的方向從極向轉至縱向。石墨烯插層經熱退火後,上層鈷薄膜會隨著溫度上升而往石墨烯下方移動,移動少量的鈷原子至石墨烯下層後,下層鈷薄膜因與基底銥、石墨烯兩者相互接觸,故磁性初始為極向方向,此時若鈷薄膜層數較大,即石墨烯上層的鈷薄膜厚度尚未低於4個原子層時,會出現交換偏移現象,若是低於4個原子層時,則整體薄膜皆為極向方向。
參考資料
[1] A. M. Abdullah, G.Guo, and C. Bi , Hard disk drive: mechatronics and control. CRC Press ,Tax ,USA (2007).
[2] P. F. Carcia¸J. Appl. Phys. 63, 5066 (1988)
[3] W. B. Zeper, F. J. A. M. Greidanus , P. F. Carcia and C. R. Fincher, J. Appl.
Phys. 65, 4971 (1989)
[4] C. H. Lee, Hui He, F. Lamelas, W. Vavra, C. Uher, and Roy Clarke¸Phys. Rev.
Lett. 62, 653 (1989)
[5]D. Pescia, G. Zampieri, M. Stampanoni, G. L. Bona, R. F. Willis, and F. Meier
Phys. Rev. Lett. 58, 933( 1987)
[6] H.Y. Ho, J.S. Tsay, and Y. Chen, Jpn. J. Appl. Phys. 49, 075802 (2010).
[7] A. Diaye, S. Bleikamp, P. Feibelman, and T. Michely, Phys. Rev. Lett. 97, 215501 (2006).
[8] S. Vlaic, A. Kimouche, J. Coraux, B. Santos, A. Locatelli, and N. Rougemaille, Appl. Phys. Lett. 104, 101602 (2014).
[9] J.A.C. Bland, and B. Heinrich, Ultrathin Magnetic Structures, I&II, Springer-Verlag, Berlin, Heidelberg (1994).
[10] H. Vita, St. Böttcher, P. Leicht, K. Horn, A. B. Shick, and F. Máca, Phys. Rev. B 90, 165432 (2014).
[11] Jakub Drneca Sergio Vlaicb, Ilaria Carlomagnoa, Carmen Juliana Gonzalezb, Helena Iserna, Francesco Carlàa, Roman Fialae, Nicolas Rougemailleb, Carbon. 94, 554(2015)
[12] C. Argile, and G. E.Rhead, Surf. Sci. Rep. 10, 2779 (1989).
[13] E. Bauer, Appl. Surf. Sci. 11, 479 (1982).
[14] G.A. Somorjai, Introduction to Surface Chemistry and Catalysis, John Wiley & Sons, 1st edit, Inc, New York, USA (1994).
[15] P.M. Martin, Handbook of deposition technologies for films and Coatings: science, applications and technology, John Wiley &Sons, 3th edit, Washington (2009).
[16] 張勁燕,半導體製程設備,第四版,五南出版社,臺北市,(2005)。
[17] 王建義,薄膜工程學,第二版,全華圖書 ,臺北市,(2014)。
[18] H.O. Pierson, Handbook of Chemical Vapor Deposition: Principles, Technology and Applications. WILLIAM ANDREW PUBLISHING, LLC Norwich, USA (1999).
[19]J. D. Plummer, M .D .Deal, and P. B. Griffin, Silicon VLSI technology, Prentice Hall, New Jersey, USA (2000).
[20]R. Murali, Graphene Nanoelectronics From Materials to Circuits, Springer, Altanta, USA (2011).
[21]金重勳,磁性技術手冊磁性技術協會,竹東(2002)。
[22] D. Jiles, Introduction to Magnetism and Magnetic Materials, 2nd edit, New York, USA (1998).
[23]D. K. Cheng, Field and Wave Electromagnetics¸ 2nd edit, Addison-Wesley, New York, USA (1989).
[24] M.T. Johnson, P.J.H. Bloemen, and F.J.A. den Broeder, J.J. de Vries, Rep. Prog. Phys. 59, 1409 (1996).
[25] W.J.M. de Jonge, P.J.H. Bloemen, and F.J.A. den Broeder, Ultrathin Magnetic Structures, Edited by J.A.C. Bland and B.Heinrich, Springer-Verlag, Berlin,(1994).
[26] C. Chappert and P. Bruno, J. Appl. Phys. 64, 5741 (1988).
[27] F.J.A .den Broeder, W. Hoving and P.J.R. Bloemen, J. Magn. Magn. Mater. 93, 562 (1991).
[28] P. Beauvillain, A. Bounouh, C. Chappert, R. Mégy, S. Ould-Mahfoud, J.P. Renard, and P. Veillet, J. Appl. Phys. 76, 6078(1994).
[29] A.K. Geim, and K.S. Novoselov, Nature Materials. 6, 183 (2007).
[30] A.C. Neto, F. Guinea, and N.M.R. Peres, Physics World. 19, 33 (2006).
[31] C. Lee, X. Wei, J.W. Kysar, and J. Hone, Science. 321, 385 (2008).
[32]. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I. V. Grigorieva, A.A. Firsov, Science 306, 666 (2004).
[33] C.W.J. Beenakker, Rev. Mod. Phys. 80, 1337 (2008).
[34] K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos, A. A. Firsov, Nature 438, 197(2004)
[36] E. Pop, D. Mann, Q. Wang , K. Goodson, and H. Dai, Nano Lett. 6, 96 (2006).
[37] W.M. Hayne, T.J. Brune, and D.R. Lide, CRC handbook of chemistry and physics, 95th edit, Internet Version (2015)
[38] M.T. Kief, and W.F. Egelhoff, Jr, Phy. Rev. B. 47, 10785 (1993).
[39] P.W. Sutter, and J.I. Flege, Nat. Mater. 7, 406 (2008).
[38] C. Gong, G. Lee, B. Shan, E.M. Vogel, R.M. Wallace, K. Cho, J. Appl. Phys. 108, 123711 (2010).
[40] E. Loginova, N. C. Bartelt, P. J. Feibelman, and K. F. McCarty, New J. Phys. 11, 063046 (2009)
[41] J. Coraux, A.T. N`Diaye, C. Busse, and T. Michely, Nano Lett. 8, 565 (2008)
[42] J.S. Tsay, Y.C. Liu, J. Phys.: Condens. Matter 20, 445003 (2008).
[43] W.H. Chen, P.C. Jiang, C.Y. Hsieh, and J.S. Tsay, IEEE Trans. Magn. 50, 2000304 (2010).
[44] M. Batzill, Surf. Sci. Rep. 67, 83 (2012).
[45] E. Loginova, N.C. Bartelt, P.J. Feibelman, K.F. McCarty, New J. Phys. 10, 093026. (2008).
[46] S.C. Wang and G. Ehrlich, Phys. Rev. Lett. 68, 1160 (1992).
[47] A.T. N' Diaye, R.V. Gastel, A.J. Martínez-Galera, J. Coraux, H. Hattab, D. Wall, F.-J. Meyerzu Heringdorf, M. Horn-von Hoegen, J.M. Gómez-Rodríguez, B Poelsema, C. Busse, and T. Michely, New J. Phys.11, 11305 (2009).
[48] T. Suzuki, R. Kobori, and K. Kaneko, Carbon. 38, 630 (2000).
[49] J. Lahiri, M. Batzill, Appl. Phys. Lett. 97, 023102 (2010).
[50] M. Sicot, Y. Fagot-Revurat, B. Kierren, G. Vasseur, and D. Malterre, Appl. Phys. Lett. 105, 191603 (2014).
[51]N. Rougemaille, A. T. N’Diaye, J. Coraux, C. Vo.Van, O. Fruchart, and A. K. Schmid Appl. Phys. Lett. 101, 142403 (2012)
[52] Johann Coraux, Alpha T. N’Diaye, Nicolas Rougemaille, Chi Vo-Van†, Amina Kimouche, Hong-Xin Yang ,Mairbek Chshiev, Nedjma Bendiab, Olivier Fruchart, and Andreas K. Schmid, J. Phys. Chem. Lett..3, 2059(2012)
[53] 蘇青森,真空技術精華,五南出版社,臺北市,(2000)。
[54] 曹立禮,材料表面科學,清華大學出版社,大陸,北京,(2007)。
[55] J.C. Vickerman, and I.Gilmore, Surface Analysis-The Principal Techniques, John Wiley &Sons, 2nd ed, INC, New York, USA (1997).
[56] G. Ertl, and J. Kuppers, Low Energy Electrons and Surface Chemistry, 2nd ed, VCH, Weinheim (1985).
[57] L.E. Davis, N.C. Macdonald, P.W. Palmberg, G.E. Riach, R.E. Weber, Handbook of Auger electron spectroscopy, 2nd ed, Physical Electronics Industries Inc, Eden Prairie (1976).
[58] M.P. Seah and W.A. Dench, Surf. Interface Anal. 1, 2 (1979).
[59] S. Ichimura, R. Shimizu, J.P. Langeron, Surf. Sci. 124, L49 (1983).
[60] C.J. Powell, Surf. Sci. 299, 34 (1994).
[61] 丁訓民,表面物理與表面分析, 復旦大學出版社,大陸,北京(2007)。
[62] K. Oura, V.G. Lifshits, A.A. Saranin, A.V. Zotov, and M. Katayama, Surface science: an introduction, Springer-Verlag, Berlin (2003).
[63] H.Y. Ho, Y.J. Chen, C.S. Shern Surf. Sci 600, 1093 (2006).
[64] 蔡志申,物理雙月刊,二十五卷五期,605 (2003).
[65] Z.Q. Qiu, and S. D. Bader, Rev. Sci. Instrum. 71, 1243 (2000).
[66] Z.Q. Qiu, and S. D. Bader, J. Magn. Magn. Mater. 200, 664 (1999).
[67] J. Kerr, Philos. Mag. 3, 339 (1877).
[68] E.R. Moog and S.D. Bader, Superlattices, Microstruct. 1, 543 (1985).
[69] S.D. Bader, E.R. Moog, and P. Grunberg, J. Magn. Magn. Mater. 53, 295 (1986).
[70] Hansen, Constitution of Binary Alloys, McGraw-Hill, New York (1958).
[71] N.R. Gall, E.V. Rutkov, and A.Y. Tontegode, Physics of the Solid State. 46, 371 (2004).