簡易檢索 / 詳目顯示

研究生: 王咸捷
論文名稱: 超薄膜鈷/銥(111)的表面結構研究
指導教授: 蔡志申
學位類別: 碩士
Master
系所名稱: 物理學系
Department of Physics
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 183
中文關鍵詞: 超薄膜薄膜磁性薄膜結構銥( (111)歐傑電子能譜低能電子繞射磁光科爾效應
DOI URL: https://doi.org/10.6345/NTNU202204767
論文種類: 學術論文
相關次數: 點閱:81下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在Co/Ir(111)系統中,鈷薄膜在2至6個原子層之間,其平行方向的原子間距d//和垂直膜面上的原子間距d_⊥因應力影響有所變化,導致結構趨於破碎,最終超過8個原子層後產生超順磁的現象。石墨烯插層對於Co/Ir(111)系統影響很大,在鈷薄膜為1.33層以內是量測不到磁滯曲線,當鈷薄膜成長到2.66至3.99個原子層時,鈷薄膜受石墨烯介面影響呈現垂直磁化系統,但與Co/Ir(111)系統最大的不同在於,當鈷薄膜在大於3.99個層之後,未有超順磁現象產生,此時磁異向性由磁晶異向性改為形狀異向性主導,發生自旋取向相變(spin reorientation transition,SRT),磁化的方向從極向轉至縱向。石墨烯插層經熱退火後,上層鈷薄膜會隨著溫度上升而往石墨烯下方移動,移動少量的鈷原子至石墨烯下層後,下層鈷薄膜因與基底銥、石墨烯兩者相互接觸,故磁性初始為極向方向,此時若鈷薄膜層數較大,即石墨烯上層的鈷薄膜厚度尚未低於4個原子層時,會出現交換偏移現象,若是低於4個原子層時,則整體薄膜皆為極向方向。

    摘要 4 第一章 緒論 5 第二章 基本原理介紹 9 2-1 薄膜成長理論 9 2-1-1 薄膜成長模式 9 2-1-2 影響薄膜成長的因素 10 2-2 物理氣相沉積(physical vapor deposition,PVD) 12 2-2-1 蒸鍍(evaporation) 13 2-2-2 分子束磊晶(molecular beam epitaxy,MBE) 14 2-2-3 濺鍍沉積(sputtering deposition) 15 2-2-4 離子束沉積(ion beam deposition) 16 2-3 化學氣相沉積(chemical vapor deposition, CVD) 18 2-3-1 化學氣相沉積的原理 18 2-3-2 化學氣相沉積成長石墨烯 20 2-4 磁性物質 23 2-4-1 磁性物質分類 23 2-5 磁異向性理論 30 2-5-1 磁異向性 30 2-5-2 影響磁異向性的因素 33 2-6 材料介紹 37 2-6-1 石墨烯 37 2-6-2 鈷(cobalt) 40 2-6-3銥(iridium) 40 2-6-4 銥金屬與石墨烯系統 41 第三章 實驗原理與儀器 48 3-1 超高真空系統(ultrahigh vacuum) 48 3-1-1 超高真空定義 48 3-1-2 超高真空系統裝置 51 3-1-3 超高真空的維持 58 3-2 歐傑電子能譜儀(Auger electron spectroscopy,AES) 61 3-2-1歐傑效應與歐傑電子能譜儀 61 3-2-2歐傑電子能譜術的應用 65 3-3 低能量電子繞射儀(low energy electron diffractomerer,LEED ) 71 3-3-1低能量電子繞射儀的基本原理 71 3-3-2 低能量電子繞射儀的內部結構與運作模式 75 3-3-3低能量電子繞射儀的正面亮點分析 77 3-3-4低能量電子繞射的中心量點強度對其入射電子能量分析 78 3-4 表面磁光科爾效應(surface magneto-optic Kerr effect,SMOKE) 83 3-4-1 磁光科爾效應理論 83 3-4-2 磁光科爾效應其量測原理 86 3-4-3 磁光科爾效應儀 89 第四章 實驗結果與討論 91 4-1 Co/Ir(111)研究 92 4-1-1 Co/Ir(111)歐傑電子能譜分析 92 4-1-2 Co/Ir(111)低能電子繞射分析 99 4-1-3 Co/Ir(111)表面磁光科爾效應分析 117 4-2 石墨烯插層對Co/Ir(111)特性影響 125 4-2-1石墨烯的成長 125 4-2-3 石墨烯插層對Co/Ir(111)熱退火影響 139 第五章 討論與結論 170

    參考資料
    [1] A. M. Abdullah, G.Guo, and C. Bi , Hard disk drive: mechatronics and control. CRC Press ,Tax ,USA (2007).
    [2] P. F. Carcia¸J. Appl. Phys. 63, 5066 (1988)
    [3] W. B. Zeper, F. J. A. M. Greidanus , P. F. Carcia and C. R. Fincher, J. Appl.
    Phys. 65, 4971 (1989)
    [4] C. H. Lee, Hui He, F. Lamelas, W. Vavra, C. Uher, and Roy Clarke¸Phys. Rev.
    Lett. 62, 653 (1989)
    [5]D. Pescia, G. Zampieri, M. Stampanoni, G. L. Bona, R. F. Willis, and F. Meier
    Phys. Rev. Lett. 58, 933( 1987)
    [6] H.Y. Ho, J.S. Tsay, and Y. Chen, Jpn. J. Appl. Phys. 49, 075802 (2010).
    [7] A. Diaye, S. Bleikamp, P. Feibelman, and T. Michely, Phys. Rev. Lett. 97, 215501 (2006).
    [8] S. Vlaic, A. Kimouche, J. Coraux, B. Santos, A. Locatelli, and N. Rougemaille, Appl. Phys. Lett. 104, 101602 (2014).
    [9] J.A.C. Bland, and B. Heinrich, Ultrathin Magnetic Structures, I&II, Springer-Verlag, Berlin, Heidelberg (1994).
    [10] H. Vita, St. Böttcher, P. Leicht, K. Horn, A. B. Shick, and F. Máca, Phys. Rev. B 90, 165432 (2014).
    [11] Jakub Drneca Sergio Vlaicb, Ilaria Carlomagnoa, Carmen Juliana Gonzalezb, Helena Iserna, Francesco Carlàa, Roman Fialae, Nicolas Rougemailleb, Carbon. 94, 554(2015)
    [12] C. Argile, and G. E.Rhead, Surf. Sci. Rep. 10, 2779 (1989).
    [13] E. Bauer, Appl. Surf. Sci. 11, 479 (1982).
    [14] G.A. Somorjai, Introduction to Surface Chemistry and Catalysis, John Wiley & Sons, 1st edit, Inc, New York, USA (1994).
    [15] P.M. Martin, Handbook of deposition technologies for films and Coatings: science, applications and technology, John Wiley &Sons, 3th edit, Washington (2009).
    [16] 張勁燕,半導體製程設備,第四版,五南出版社,臺北市,(2005)。
    [17] 王建義,薄膜工程學,第二版,全華圖書 ,臺北市,(2014)。
    [18] H.O. Pierson, Handbook of Chemical Vapor Deposition: Principles, Technology and Applications. WILLIAM ANDREW PUBLISHING, LLC Norwich, USA (1999).
    [19]J. D. Plummer, M .D .Deal, and P. B. Griffin, Silicon VLSI technology, Prentice Hall, New Jersey, USA (2000).
    [20]R. Murali, Graphene Nanoelectronics From Materials to Circuits, Springer, Altanta, USA (2011).
    [21]金重勳,磁性技術手冊磁性技術協會,竹東(2002)。
    [22] D. Jiles, Introduction to Magnetism and Magnetic Materials, 2nd edit, New York, USA (1998).
    [23]D. K. Cheng, Field and Wave Electromagnetics¸ 2nd edit, Addison-Wesley, New York, USA (1989).
    [24] M.T. Johnson, P.J.H. Bloemen, and F.J.A. den Broeder, J.J. de Vries, Rep. Prog. Phys. 59, 1409 (1996).
    [25] W.J.M. de Jonge, P.J.H. Bloemen, and F.J.A. den Broeder, Ultrathin Magnetic Structures, Edited by J.A.C. Bland and B.Heinrich, Springer-Verlag, Berlin,(1994).
    [26] C. Chappert and P. Bruno, J. Appl. Phys. 64, 5741 (1988).
    [27] F.J.A .den Broeder, W. Hoving and P.J.R. Bloemen, J. Magn. Magn. Mater. 93, 562 (1991).
    [28] P. Beauvillain, A. Bounouh, C. Chappert, R. Mégy, S. Ould-Mahfoud, J.P. Renard, and P. Veillet, J. Appl. Phys. 76, 6078(1994).
    [29] A.K. Geim, and K.S. Novoselov, Nature Materials. 6, 183 (2007).
    [30] A.C. Neto, F. Guinea, and N.M.R. Peres, Physics World. 19, 33 (2006).
    [31] C. Lee, X. Wei, J.W. Kysar, and J. Hone, Science. 321, 385 (2008).
    [32]. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I. V. Grigorieva, A.A. Firsov, Science 306, 666 (2004).
    [33] C.W.J. Beenakker, Rev. Mod. Phys. 80, 1337 (2008).
    [34] K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos, A. A. Firsov, Nature 438, 197(2004)
    [36] E. Pop, D. Mann, Q. Wang , K. Goodson, and H. Dai, Nano Lett. 6, 96 (2006).
    [37] W.M. Hayne, T.J. Brune, and D.R. Lide, CRC handbook of chemistry and physics, 95th edit, Internet Version (2015)
    [38] M.T. Kief, and W.F. Egelhoff, Jr, Phy. Rev. B. 47, 10785 (1993).
    [39] P.W. Sutter, and J.I. Flege, Nat. Mater. 7, 406 (2008).
    [38] C. Gong, G. Lee, B. Shan, E.M. Vogel, R.M. Wallace, K. Cho, J. Appl. Phys. 108, 123711 (2010).
    [40] E. Loginova, N. C. Bartelt, P. J. Feibelman, and K. F. McCarty, New J. Phys. 11, 063046 (2009)
    [41] J. Coraux, A.T. N`Diaye, C. Busse, and T. Michely, Nano Lett. 8, 565 (2008)
    [42] J.S. Tsay, Y.C. Liu, J. Phys.: Condens. Matter 20, 445003 (2008).
    [43] W.H. Chen, P.C. Jiang, C.Y. Hsieh, and J.S. Tsay, IEEE Trans. Magn. 50, 2000304 (2010).
    [44] M. Batzill, Surf. Sci. Rep. 67, 83 (2012).
    [45] E. Loginova, N.C. Bartelt, P.J. Feibelman, K.F. McCarty, New J. Phys. 10, 093026. (2008).
    [46] S.C. Wang and G. Ehrlich, Phys. Rev. Lett. 68, 1160 (1992).
    [47] A.T. N' Diaye, R.V. Gastel, A.J. Martínez-Galera, J. Coraux, H. Hattab, D. Wall, F.-J. Meyerzu Heringdorf, M. Horn-von Hoegen, J.M. Gómez-Rodríguez, B Poelsema, C. Busse, and T. Michely, New J. Phys.11, 11305 (2009).
    [48] T. Suzuki, R. Kobori, and K. Kaneko, Carbon. 38, 630 (2000).
    [49] J. Lahiri, M. Batzill, Appl. Phys. Lett. 97, 023102 (2010).
    [50] M. Sicot, Y. Fagot-Revurat, B. Kierren, G. Vasseur, and D. Malterre, Appl. Phys. Lett. 105, 191603 (2014).
    [51]N. Rougemaille, A. T. N’Diaye, J. Coraux, C. Vo.Van, O. Fruchart, and A. K. Schmid Appl. Phys. Lett. 101, 142403 (2012)
    [52] Johann Coraux, Alpha T. N’Diaye, Nicolas Rougemaille, Chi Vo-Van†, Amina Kimouche, Hong-Xin Yang ,Mairbek Chshiev, Nedjma Bendiab, Olivier Fruchart, and Andreas K. Schmid, J. Phys. Chem. Lett..3, 2059(2012)
    [53] 蘇青森,真空技術精華,五南出版社,臺北市,(2000)。
    [54] 曹立禮,材料表面科學,清華大學出版社,大陸,北京,(2007)。
    [55] J.C. Vickerman, and I.Gilmore, Surface Analysis-The Principal Techniques, John Wiley &Sons, 2nd ed, INC, New York, USA (1997).
    [56] G. Ertl, and J. Kuppers, Low Energy Electrons and Surface Chemistry, 2nd ed, VCH, Weinheim (1985).
    [57] L.E. Davis, N.C. Macdonald, P.W. Palmberg, G.E. Riach, R.E. Weber, Handbook of Auger electron spectroscopy, 2nd ed, Physical Electronics Industries Inc, Eden Prairie (1976).
    [58] M.P. Seah and W.A. Dench, Surf. Interface Anal. 1, 2 (1979).
    [59] S. Ichimura, R. Shimizu, J.P. Langeron, Surf. Sci. 124, L49 (1983).
    [60] C.J. Powell, Surf. Sci. 299, 34 (1994).
    [61] 丁訓民,表面物理與表面分析, 復旦大學出版社,大陸,北京(2007)。
    [62] K. Oura, V.G. Lifshits, A.A. Saranin, A.V. Zotov, and M. Katayama, Surface science: an introduction, Springer-Verlag, Berlin (2003).
    [63] H.Y. Ho, Y.J. Chen, C.S. Shern Surf. Sci 600, 1093 (2006).
    [64] 蔡志申,物理雙月刊,二十五卷五期,605 (2003).
    [65] Z.Q. Qiu, and S. D. Bader, Rev. Sci. Instrum. 71, 1243 (2000).
    [66] Z.Q. Qiu, and S. D. Bader, J. Magn. Magn. Mater. 200, 664 (1999).
    [67] J. Kerr, Philos. Mag. 3, 339 (1877).
    [68] E.R. Moog and S.D. Bader, Superlattices, Microstruct. 1, 543 (1985).
    [69] S.D. Bader, E.R. Moog, and P. Grunberg, J. Magn. Magn. Mater. 53, 295 (1986).
    [70] Hansen, Constitution of Binary Alloys, McGraw-Hill, New York (1958).
    [71] N.R. Gall, E.V. Rutkov, and A.Y. Tontegode, Physics of the Solid State. 46, 371 (2004).

    無法下載圖示 本全文未授權公開
    QR CODE