簡易檢索 / 詳目顯示

研究生: 許竣博
Hsu Chun-Po
論文名稱: 探討斑馬魚恐懼記憶之神經機制
To elucidate the neural mechanism of fear memory in zebrafish
指導教授: 呂國棟
Lu, Kwok-Tung
學位類別: 碩士
Master
系所名稱: 生命科學系
Department of Life Science
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 62
中文關鍵詞: 斑馬魚恐懼記憶神經機制
英文關鍵詞: Zebrafish, Fear memory, Neural mechanism
論文種類: 學術論文
相關次數: 點閱:226下載:12
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

斑馬魚在脊椎動物學習和記憶能力之基因體研究方面是一種功能強大的模式動物。科學家利用斑馬魚的基因轉殖技術,發展出多樣不同基因變異的品系。而在各種突變斑馬魚被大量建立的同時,更迫切需要進行專門針對斑馬魚學習與記憶功能的行為研究。在許多研究抑制性逃避行為實驗,常以其他物種─例如大白鼠當動物模式。然而,目前對硬骨魚類情緒性記憶相關的研究依然相當缺乏,有礙於斑馬魚於神經科學相關研究的推廣。本研究採用改良型之抑制性逃避行為箱來研究斑馬魚之抑制性逃避行為。
本研究之實驗結果顯示:(1)於訓練後24小時,所有斑馬魚將會被再放回淺水區進行測試。此時,斑馬魚會對深水區產生抑制性逃避行為,且停留在淺水區的時間較訓練前有明顯的延長。(2)在消減階段,所有重新暴露於深水區的斑馬魚,會改變其對深水區已建立之抑制性逃避行為,而停留在淺水區的時間較訓練前有明顯的縮短。(3)在訓練後7天,所有斑馬魚放回淺水區進行測試,斑馬魚仍對深水區產生抑制性逃避行為,顯示此恐懼記憶被保存下來的時間至少可達到7天。(4)經過(+)MK-801(一種非競爭性麩胺酸NMDA受體拮抗劑)處理的斑馬魚,其抑制性逃避行為將會被阻斷。 (+) MK-801處理組和對照組之間,斑馬魚對深水區產生抑制性逃避行為而停留在淺水區的時間有顯著差異。(5)在經過訓練後的斑馬魚,端腦內的MAPK的磷酸化程度,會隨著時間而增加,在訓練後1.5小時到達高峰,同時與naïve組比較也有明顯增加。而端腦內的MAPK的表現量並沒有明顯變化。
綜合上述各點,本實驗不只建立一套操作簡單的行為儀器來研究斑馬魚的恐懼記憶,且實驗結果推論斑馬魚恐懼記憶相關的神經機轉與陸生的脊椎動物相似。因此,也許可以增進我們使用斑馬魚來研究神經科學的可行性,並且拓展對精神疾病藥物的開發領域,而在未來配合多樣不同突變的斑馬魚,將有助釐清脊椎動物基因與學習以及記憶功能之間的關係。

The zebrafish (Danio rerio) represents a powerful model for genetic studies involved in learning and memory function in vertebrates. Scientist developed a variety of genetic mutants by using genetic techniques in zebrafish. While zebrafish mutants are being developed, behavioral researches on learning and memory function in zebrafish are in urgent need. Numerous studies investigated inhibitory avoidance conditioning in other animal model such as rat. However, the study of emotional behavior in teleost fish was still lacking. We used a modified behavioral chamber in our study to study the inhibitory avoidance learning in zebrafish.
Results showed: (1) Twenty-four hour after the training day, all fishes were returned to the shallow compartment again. The escape latency to enter the deeply compartment was significantly longer than pre-training. (2) After exposing to the deeply compartment (extinction training), all fishes were decline in escape latency when compared with the previously test. (3) Seven day after the training day, all fishes were returned to the shallow compartment again. The escape latency to enter the deeply compartment was significantly longer than pre-training. It suggested that this memory can be stored at least seven days. (4) The administration of (+)MK-801(a noncompetitive NMDA receptor antagonist) blocked the expression of inhibitory avoidance behavior in zebrafish. There was a significant difference in escape latency between (+)MK-801-treated group and control group. (5) The phospho-MAPK expression of trained zebrafish’s telencephalon was gradually increasing after training. One and half hour after training, the phospho-MAPK expression of trained zebrafish’s telencephalon reached peak, and there was a significant increase compared with naïve group. The MAPK expression of trained zebrafish’s telencephalon was no significant change.
The present study not only establishes a simple behavior model to study the fear memory in zebrafish, but also suggest the similar involvements of neurochemicals in learning and memory among vertebrates. Thus, it may improve our usage of zebrafish model in neuroscience researches, which may extend to the pace of psychiatric drug discovery, and future studies with zebrafish mutants may be helpful for identify genes involved in learning and memory in vertebrates.

壹、中文摘要(Abstract in Chinese)…………………………………2-3 貳、英文摘要(Abstract in English)…………………………………4-5 參、緒論(Introduction) 一、研究背景(Research Background)……………………………6-16 二、研究目的(Research Aim)……………………………………16 肆、研究材料與方法(Materials & Methods) A. 實驗動物(Animals)…………………………………………17 B. 實驗藥物(Drug)………………………………………………17 C. 抑制性趨避行為(Inhibitory Avoidance Apparatus)………18-20 D. 運動行為監測(Locomotor Activity Monitoring)……………20 E. 西方轉漬法(Western Blotting Assay)……………………20-27 F. 統計分析(Statistics)…………………………………………27 伍、實驗結果(Results)……………………………………………28-38 陸、實驗討論(Discussion)…………………………………………39-44 柒、參考文獻(References)…………………………………………45-52 捌、附圖/表(Figures & Tables)……………………………………53-62

Ballif BA, Blenis J. 2001. Molecular mechanisms mediating mammalian mitogen-activated protein kinase (MAPK) kinase (MEK)-MAPK cell survival signals. Cell Growth Differ 12:397-408.
Bingman VV. 1998. The importance of atmospheric odours for the homing performance of pigeons in the sonoran desert of the southwestern united states. J Exp Biol 201 (Pt 12):755-760.
Bliss TV, Collingridge GL. 1993. A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361:31-39.
Bouton ME. 2004. Context and behavioral processes in extinction. Learn Mem 11:485-494.
Bouton ME, Rosengard C, Achenbach GG, Peck CA, Brooks DC. 1993. Effects of contextual conditioning and unconditional stimulus presentation on performance in appetitive conditioning. Q J Exp Psychol B 46:63-95.
Byrd CA, Jones JT, Quattro JM, Rogers ME, Brunjes PC, Vogt RG. 1996. Ontogeny of odorant receptor gene expression in zebrafish, Danio rerio. J Neurobiol 29:445-458.
Campeau S, Miserendino MJ, Davis M. 1992. Intra-amygdala infusion of the N-methyl-D-aspartate receptor antagonist AP5 blocks acquisition but not expression of fear-potentiated startle to an auditory conditioned stimulus. Behav Neurosci 106:569-574.
Davis M. 1992. The role of the amygdala in fear-potentiated startle: implications for animal models of anxiety. Trends Pharmacol Sci 13:35-41.
Davis S, Vanhoutte P, Pages C, Caboche J, Laroche S. 2000. The MAPK/ERK cascade targets both Elk-1 and cAMP response element-binding protein to control long-term potentiation-dependent gene expression in the dentate gyrus in vivo. J Neurosci 20:4563-4572.
Doron NN, Ledoux JE. 2000. Cells in the posterior thalamus project to both amygdala and temporal cortex: a quantitative retrograde double-labeling study in the rat. J Comp Neurol 425:257-274.
Eichenbaum H, Dudchenko P, Wood E, Shapiro M, Tanila H. 1999. The hippocampus, memory, and place cells: is it spatial memory or a memory space? Neuron 23:209-226.
Falls WA, Miserendino MJ, Davis M. 1992. Extinction of fear-potentiated startle: blockade by infusion of an NMDA antagonist into the amygdala. J Neurosci 12:854-863.
German S, Monica RMV, James LM, Jorge HM, Ivan I. 2003. The role of NMDA glutamate receptors, PKA, MAPK, and CAMKII in the hippocampus in extinction of conditioned fear. Hippocampus 13:53-58.
Ghosh A, Ginty DD, Bading H, Greenberg ME. 1994. Calcium regulation of gene expression in neuronal cells. J Neurobiol 25:294-303.
Goelet P, Castellucci VF, Schacher S, Kandel ER. 1986. The long and the short of long-term memory--a molecular framework. Nature 322:419-422.
Gomez Y, Vargas JP, Portavella M, Lopez JC. 2006. Spatial learning and goldfish telencephalon NMDA receptors. Neurobiol Learn Mem 85:252-262.
Guzowski JF, McGaugh JL. 1997. Antisense oligodeoxynucleotide-mediated disruption of hippocampal cAMP response element binding protein levels impairs consolidation of memory for water maze training. Proc Natl Aca Sci USA:5647-5651.
Hartley T, Maguire EA, Spiers HJ, Burgess N. 2003. The well-worn route and the path less traveled: distinct neural bases of route following and wayfinding in humans. Neuron 37:877-888.
Impey S, Obrietan K, Storm DR. 1999. Making new connections: role of ERK/MAP kinase signaling in neuronal plasticity. Neuron 23:11-14.
Kida S, Josselyn SA, de Ortiz SP, Kogan JH, Chevere I, Masushige S, Silva AJ. 2002. CREB required for the stability of new and reactivated fear memories. Nat Neurosci 5:348-355.
Kim M, Davis M. 1993. Lack of a temporal gradient of retrograde amnesia in rats with amygdala lesions assessed with the fear-potentiated startle paradigm. Behav Neurosci 107:1088-1092.
Levin ED, Chen E. 2004. Nicotinic involvement in memory function in zebrafish. Neurotoxicol Teratol 26:731-735.
Levin ED, Limpuangthip J, Rachakonda T, Peterson M. 2006. Timing of nicotine effects on learning in zebrafish. Psychopharmacology (Berl) 184:547-552.
Lin CH, Yeh SH, Lu HY, Gean PW. 2003. The similarities and diversities of signal pathways leading to consolidation of conditioning and consolidation of extinction of fear memory. J Neurosci 23:8310-8317.
Lonze BE, Ginty DD. 2002. Function and regulation of CREB family transcription factors in the nervous system. Neuron 35:605-623.
Lopez JC, Bingman VP, Rodriguez F, Gomez Y, Salas C. 2000. Dissociation of place and cue learning by telencephalic ablation in goldfish. Behav Neurosci 114:687-699.
Lovibond PF, Davis NR, O'Flaherty AS. 2000. Protection from extinction in human fear conditioning. Behav Res Ther 38:967-983.
Maren S. 1999. Long-term potentiation in the amygdala: a mechanism for emotional learning and memory. Trends Neurosci 22:561-567.
Maren S, Aharonov G, Stote DL, Fanselow MS. 1996. N-methyl-D-aspartate receptors in the basolateral amygdala are required for both acquisition and expression of conditional fear in rats. Behav Neurosci 110:1365-1374.
Marks I. 1987. The development of normal fear: a review. J Child Psychol Psychiatry 28:667-697.
Marshall CJ. 1995. Specificity of receptor tyrosine kinase signaling: transient versus sustained extracellular signal-regulated kinase activation. Cell 80:179-185.
Mombaerts P. 2001. How smell develops. Nat Neurosci 4 Suppl:1192-1198.
Morris RG. 1989. Synaptic plasticity and learning: selective impairment of learning rats and blockade of long-term potentiation in vivo by the N-methyl-D-aspartate receptor antagonist AP5. J Neurosci 9:3040-3057.
Myers KM, Davis M. 2002. Behavioral and neural analysis of extinction. Neuron 36:567-584.
Nam RH, Kim W, Lee CJ. 2004. NMDA receptor-dependent long-term potentiation in the telencephalon of the zebrafish. Neurosci Lett 370:248-251.
Newhouse PA, Potter A, Levin ED. 1997. Nicotinic system involvement in Alzheimer's and Parkinson's diseases. Implications for therapeutics. Drugs Aging 11:206-228.
Northcutt RG. 1981. Evolution of the telencephalon in nonmammals. Annu Rev Neurosci 4:301-350.
Orger MB, Smear MC, Anstis SM, Baier H. 2000. Perception of Fourier and non-Fourier motion by larval zebrafish. Nat Neurosci 3:1128-1133.
Packard MG, Teather LA. 1997. Double dissociation of hippocampal and dorsal-striatal memory systems by posttraining intracerebral injections of 2-amino-5-phosphonopentanoic acid. Behav Neurosci 111:543-551.
Phillips RG, LeDoux JE. 1992. Differential contribution of amygdala and hippocampus to cued and contextual fear conditioning. Behav Neurosci 106:274-285.
Portavella, M., Torres, B. and Salas, C., 2004. Avoidance response in goldfish:emotional and temporal involvement of medial and lateral telencephalic pallium. J Neurosci. 24, 2335-2342.
Portavella M, Vargas JP. 2005. Emotional and spatial learning in goldfish is dependent on different telencephalic pallial systems. Eur J Neurosci 21:2800-2806.
Pozios KC, Ding J, Degger B, Upton Z, Duan C. 2001. IGFs stimulate zebrafish cell proliferation by activating MAP kinase and PI3-kinase-signaling pathways. Am J Physiol Regul Integr Comp Physiol 280:R1230-1239.
Rawashdeh O, de Borsetti NH, Roman G, Cahill GM. 2007. Melatonin suppresses nighttime memory formation in zebrafish. Science 318:1144-1146.
Richardson JT. 1996. Memory impairment in multiple sclerosis: reports of patients and relatives. Br J Clin Psychol 35 ( Pt 2):205-219.
Rodriguez F, Duran E, Gomez A, Ocana FM, Alvarez E, Jimenez-Moya F, Broglio C, Salas C. 2005. Cognitive and emotional functions of the teleost fish cerebellum. Brain Res Bull 66:365-370.
Rodriguez F, Lopez JC, Vargas JP, Gomez Y, Broglio C, Salas C. 2002. Conservation of spatial memory function in the pallial forebrain of reptiles and ray-finned fishes. J Neurosci 22:2894-2903.
Rogan MT, Staubli UV, LeDoux JE. 1997. Fear conditioning induces associative long-term potentiation in the amygdala. Nature 390:604-607.
Salas C, Broglio C, Rodriguez F. 2003. Evolution of forebrain and spatial cognition in vertebrates: conservation across diversity. Brain Behav Evol 62:72-82.
Schafe GE, Atkins CM, Swank MW, Bauer EP, Sweatt JD, LeDoux JE. 2000. Activation of ERK/MAP kinase in the amygdala is required for memory consolidation of pavlovian fear conditioning. J Neurosci 20: 8177-8187.
Sherry DF, Galef BG, Jr., Clark MM. 1996. Sex and intrauterine position influence the size of the gerbil hippocampus. Physiol Behav 60:1491-1494.
Squire LR. 1987. The organization and neural substrates of human memory. Int J Neurol 21-22:218-222.
Squire LR, Zola SM. 1996. Structure and function of declarative and nondeclarative memory systems. Proc Natl Acad Sci U S A 93:13515-13522.
Swain HA, Sigstad C, Scalzo FM. 2004. Effects of dizocilpine (MK-801) on circling behavior, swimming activity, and place preference in zebrafish (Danio rerio). Neurotoxicol Teratol 26:725-729.
Tan S, Kirk RC, Abraham WC, McNaughton N. 1989. Effects of the NMDA antagonists CPP and MK-801 on delayed conditional discrimination. Psychopharmacology (Berl) 98:556-560.
Tully T, Bourtchouladze R, Scott R, Tallman J. 2003. Targeting the CREB pathway for memory enhancers. Nat Rev Drug Discov 2:267-277.
Vargas JP, Rodr inverted question markiguez F, JC Liqm, Arias JL, Salas C. 2000. Spatial learning-induced increase in the argyrophilic nucleolar organizer region of dorsolateral telencephalic neurons in goldfish. Brain Res 865:77-84.
Vervliet B, Vansteenwegen D, Eelen P. 2004. Generalization of extinguished skin conductance responding in human fear conditioning. Learn Mem 11:555-558.
Wagner T, Swierczynska Z, Stankiewicz C, Bujalska H, Kosowska E. 1981. A new model of experimental amyloidosis? Z Rheumatol 40:234-235.
Walker DL, Davis M. 1997. Double dissociation between the involvement of the bed nucleus of the stria terminalis and the central nucleus of the amygdala in startle increases produced by conditioned versus unconditioned fear. J Neurosci 17:9375-9383.
Westerfield, M. 1995. The Zebrafish Book: A Guide for Laboratory Use of the Zebrafish ( Brachydanio Rerio ). University of Oregon Press.
Whitmore D, Foulkes NS, Strahle U, Sassone-Corsi P. 1998. Zebrafish Clock rhythmic expression reveals independent peripheral circadian oscillators. Nat Neurosci 1:701-707.
Williams FE, White D, Messer WS. 2002. A simple spatial alternation task for assessing memory function in zebrafish. Behav Processes 58:125-132.
Xu X, Scott-Scheiern T, Kempker L, Simons K. 2007. Active avoidance conditioning in zebrafish (Danio rerio). Neurobiol Learn Mem 87:72-77.

下載圖示
QR CODE