簡易檢索 / 詳目顯示

研究生: 黃文竑
Wen-Hung Huang
論文名稱: 頻域光學延遲線於光學同調斷層顯像系統之研究
Study of frequency-domain optical delay line for optical coherence tomography
指導教授: 郭文娟
Kuo, Wen-Chuan
學位類別: 碩士
Master
系所名稱: 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 38
中文關鍵詞: 光學同調斷層掃描術麥克森干涉儀馬赫-詹德干涉儀光學延遲掃描線頻域光學延遲掃描線平衡式偵測
英文關鍵詞: OCT, Michelson Interferometer, Mach-Zehnder Interferometer, ODL, FD-ODL, Balanced Detection
論文種類: 學術論文
相關次數: 點閱:227下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 中文摘要
    光學同調斷層攝影術(OCT)為一種利用低同調干涉術的原理,可用來量測生物組織非接觸式的斷層影像,而functional OCT為近年來其中一支OCT的發展趨勢,其是利用取得干涉訊號的相位資訊,使得除了可以得到一般OCT影像之外,還可以得知待測物的各種特性,如血流速度參數、雙折射參數與相位變化參數…等。因此本研究設計以FD-ODL調制技術搭配馬赫-詹德干涉儀與平衡式偵測的光路架構以獲取OCT光強度訊號大小與相位資訊,初步實驗結果証實使用FD-ODL做為OCT系統中調變光程差具有相速度和群速度的延遲是相互獨立的、掃描速率快、掃描線性度佳、色散影響小與掃描工作距離範圍長…等特性。

    Abstract
    Optical coherence tomography (OCT), based on low coherence interferometry, is a powerful tool that can support non-contact and high-speed tomographic imaging in biological tissues. Moreover, several functional OCT (f-OCT), based on phase-resolved techniques, are proposed recently that can image and quantify physiological parameters including blood flow, birefringence, or spatial phase variation. Therefore, in this research, we developed a balanced OCT system to yield structural image and phase information by incorporating the frequency-domain optical delay line (FD-ODL) into a Mach-Zehnder interferometer. Several distinctive properties of such FD-ODL, including the decoupling of the phase and group delay, high-speed and high-repetition linear scanning, and the control of dispersion, have been confirmed by our experimental results.

    目錄 中文摘要-------------------------------------------------Ⅰ 英文摘要-------------------------------------------------Ⅱ 目錄-----------------------------------------------------Ⅲ 圖目錄索引-----------------------------------------------Ⅴ 表目錄索引-----------------------------------------------Ⅶ 第一章 前言-----------------------------------------------1 1.1 【簡介】--------------------------------------------1 1.1.1 【光學同調斷層掃描術的相關發展與應用】---------1 1.1.2 【功能性光學同調斷層掃描術的相關發展與應用】---2 1.2 【研究動機與目的】----------------------------------2 1.3 【論文架構】----------------------------------------3 第二章 理論背景-------------------------------------------4 2.1 【干涉儀架構】--------------------------------------4 2.1.1 【麥克森干涉儀】-------------------------------5 2.1.2 【馬赫-詹德干涉儀】----------------------------6 2.2 【光學延遲掃描線(ODL)】-----------------------------7 2.2.1 【頻域光學延遲掃描線(FD-ODL)】-----------------8 2.3 【光偵測器偵測方式】--------------------------------9 2.3.1 【非平衡式偵測(UBD)推導】---------------------10 2.3.2 【平衡式偵測(BD)推導】------------------------10 第三章 實驗架構與原理------------------------------------12 3.1 【系統介紹】---------------------------------------12 3.2 【系統理論推導】-----------------------------------13 3.2.1 【光源部分】----------------------------------13 3.2.2 【參考光路徑】--------------------------------13 3.2.3 【信號光路徑】--------------------------------14 3.2.4 【干涉訊號路徑】------------------------------15 3.2.5 【平衡式偵測器部分】--------------------------15 第四章 實驗結果與討論------------------------------------16 4.1 【FD-ODL產生的掃描速率】---------------------------16 4.1.1 【參考端由電動平移台調制時】------------------16 4.1.2 【參考端由FD-ODL調制時】---------------------17 4.2 【調制頻率與 的關係】-----------------------------19 4.3 【Y-Z方向影像尺寸大小】----------------------------20 4.3.1 【Z方向掃描機制】-----------------------------20 4.3.2 【Y方向掃描機制】-----------------------------21 4.4 【系統的解析度】-----------------------------------22 4.4.1 【縱向解析度】--------------------------------22 4.4.2 【橫向解析度】--------------------------------23 4.5 【系統的靈敏度】-----------------------------------25 4.6 【樣品量測】---------------------------------------28 第五章 總結與未來工作------------------------------------30 5.1 【總結】-------------------------------------------30 5.2 【未來工作】---------------------------------------31 參考文獻-------------------------------------------------32 圖目錄索引 圖 2-1、應用在OCT系統中的干涉儀架構----------------------5 圖 2-2、麥克森干涉儀(Michelson Interferometer)-------------5 圖 2-3、馬赫-詹德干涉儀(Mach-Zehnder Interferometer)-------6 圖 2-4、應用在OCT系統中的ODL架構------------------------8 圖 2-5、麥克森干涉架構-UnBalanced Detection --------------10 圖 2-6、麥克森干涉架構-Balanced Detection ----------------11 圖 3-1、以頻域光學延遲線為調制機制之光學同調斷層顯像系統方 塊圖---------------------------------------------12 圖 4-1、頻域光學延遲線於光學同調斷層顯像系統實際架設照片-16 圖 4-2、樣品端電動平移台上的反射鏡平移前與平移1000 μm後的 干涉訊號圖---------------------------------------17 圖 4-3、樣品端電動平移台上的反射鏡的干涉訊號圖-----------18 圖 4-4、干涉訊號發生的位置與時間的關係-------------------18 圖 4-5、干涉訊號調制頻率對 的關係-----------------------19 圖 4-6、影像Y方向的長度範圍--------------------------21 圖 4-7、光源頻譜分佈圖----------------------------------22 圖 4-8、干涉訊號波包與掃描速率產生位移的關係(補償後)-----23 圖 4-9、蓋玻片二維影像量測結果---------------------------24 圖 4-10、蓋玻片二維影像中,取Y方向的一維訊號圖------------24 圖 4-11、蓋玻片二維影像中,取Y方向一維訊號做一次微分後的點 擴散函數----------------------------------------25 圖 4-12、UBD架構下系統的方塊圖---------------------------25 圖 4-13、UBD架構下。(a)干涉訊號(b)SNR圖------------------26 圖 4-14、BD架構下系統的方塊圖----------------------------26 圖 4-15、BD架構下。(a)干涉訊號(b)SNR圖-------------------26 圖 4-16、BD架構下,程式加寫數位濾波器。(a)干涉訊號(b)SNR圖 ------------------------------------------------27 圖 4-17、BD架構下,程式含數位濾波器及降低FD-ODL掃描速率。 (a)干涉訊號(b)SNR圖-----------------------------27 圖 4-18、果蠅(Drosophila)樣品量測示意圖-------------------28 圖 4-19、果蠅二維影像量測結果-----------------------------29 表目錄索引 表 4-1、不同參數下Z方向影像深度關係----------------------20

    參考文獻

    [1] P. A. Flournoy, R. W. McClure, and G. Wyntjes, "White-light interferometric thickness gauge," Applied Optics, vol. 11, pp. 1907-1915, 1972.
    [2] C. K. Hitzenberger, "Measurement of corneal thickness by low-coherence interferometry," Applied Optics, vol. 31, pp. 6637-6642, 1992.
    [3] D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical Coherence Tomography," Science, New Series, vol. 254, pp. 1178-1181, 1991.
    [4] M. R. Hee, J. A. Izatt, E. A. Swanson, D. Huang, J. S. Schuman, C. P. Lin, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography of the human retina," Arch Ophthalmol, vol. 113, pp. 325-332, 1995.
    [5] J. Welzel, E. Lankenau, R. Birngruber, and R. Engelhardt, "Optical coherence tomography of the human skin," J. Am. Acad. Dermatol., vol. 37, pp. 958-963, 1997.
    [6] J. Welzel, E. Lankenau, R. Birngruber, and R. Engelhardt, "Optical Coherence Tomography of the Skin," Skin Bioengineering Techniques and Applications in Dermatology and Cosmetology, vol. 26, pp. 27-37, 1998.
    [7] J. Rogowska, C. M. Bryant, and M. E. Brezinski, "Cartilage thickness measurements from optical coherence tomography," Journal of the Optical Society of America. A, vol. 20, pp. 357-367, 2003.
    [8] M. Sticker, C. K. Hitzenberger, R. Leitgeb, and A. F. Fercher, "Quantitative differential phase measurement and imaging in transparent and turbid media by optical coherence tomography," Optics Letters, vol. 26, pp. 518-520, 2001.
    [9] B. Povazay, K. Bizheva, A. Unterhuber, B. Hermann, H. Sattmann, A. F. Fercher, W. Drexler, A. Apolonski, W. J. Wadsworth, J. C. Knight, P. S. J. Russell, M. Vetterlein, and E. Scherzer, "Submicrometer axial resolution optical coherence tomography," Optics Letters, vol. 27, pp. 1800-1802, 2002.
    [10] V. Yang, M. Gordon, B. Qi, J. Pekar, S. Lo, E. Seng-Yue, A. Mok, B. Wilson, and I. Vitkin, "High speed, wide velocity dynamic range Doppler optical coherence tomography (Part I): System design, signal processing, and performance," Optics Express, vol. 11, pp. 794-809, 2003.
    [11] P. Herz, Y. Chen, A. Aguirre, J. Fujimoto, H. Mashimo, J. Schmitt, A. Koski, J. Goodnow, and C. Petersen, "Ultrahigh resolution optical biopsy with endoscopic optical coherence tomography," Optics Express, vol. 12, pp. 3532-3542, 2004.
    [12] J. A. Izatt, M. R. Hee, G. M. Owen, E. A. Swanson, and J. G. Fujimoto, "Optical coherence microscopy in scattering media," Optics Letters, vol. 19, pp. 590-592, 1994.
    [13] M. R. Hee, D. Huang, E. A. Swanson, and J. G. Fujimoto, "Polarization-sensitive low-coherence reflectometer for birefringence characterization and ranging," J. Opt. Soc. Am. B, Opt. phys., vol. 9, pp. 903-908, 1992.
    [14] M. J. Everett, K. Schoenenberger, B. W. Colston, Jr., and L. B. D. Silva, "Birefringence characterization of biological tissue by use of optical coherence tomography," Optics Letters, vol. 23, pp. 228-230, 1998.
    [15] G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, "In Vivo Endoscopic Optical Biopsy with Optical Coherence Tomography," Science, vol. 276, pp. 2037-2039, 1997.
    [16] Z. Chen, Z. Yonghua, S. M. Srinivas, J. S. Nelson, N. Prakash, and R. D. Frostig, "Optical Doppler tomography," IEEE J. Sel. Top. Quantum Electron., vol. 5, pp. 1134-1142, 1999.
    [17] C. K. Hitzenberger and A. F. Fercher, "Differential phase contrast in optical coherence tomography," Optics Letters, vol. 24, pp. 622-624, 1999.
    [18] D. P. Davé and T. E. Milner, "Optical low-coherence reflectometer for differential phase measurement," Optics Letters, vol. 25, pp. 227-229, 2000.
    [19] C. Yang, A. Wax, I. Georgakoudi, E. B. Hanlon, K. Badizadegan, R. R. Dasari, and M. S. Feld, "Interferometric phase-dispersion microscopy," Optics Letters, vol. 25, pp. 1526-1528, 2000.
    [20] D. P. Davé, T. Akkin, T. E. Milner, and H. G. R. III, "Phase-sensitive frequency-multiplexed optical low-coherence reflectometery," Optics Communications, vol. 193, pp. 39-43, 2001.
    [21] C. K. Hitzenberger, M. Sticker, R. Leitgeb, and A. F. Fercher, "Differential phase measurements in low-coherence interferometry without 2pi ambiguity," Optics Letters, vol. 26, pp. 1864-1866, 2001.
    [22] C. Yang, A. Wax, R. R. Dasari, and M. S. Feld, "Phase-dispersion optical tomography," Optics Letters, vol. 26, pp. 686-688, 2001.
    [23] C. Yang, A. Wax, M. S. Hahn, K. Badizadegan, R. R. Dasari, and M. S. Feld, "Phase-referenced interferometer with subwavelength and subhertz sensitivity applied to the study of cell membrane dynamics," Optics Letters, vol. 26, pp. 1271-1273, 2001.
    [24] M. Sticker, M. Pircher, E. Götzinger, H. Sattmann, A. F. Fercher, and C. K. Hitzenberger, "En face imaging of single cell layers by differential phase-contrast optical coherence microscopy," Optics Letters, vol. 27, pp. 1126-1128, 2002.
    [25] T. Akkin, T. E. Milner, H. G. R. Ⅲ, B. L. Evans, and A. J. Welch, "Biomedical applications of a fiber based low-coherence interferometer for quantitative differential phase measurements," Doctor of Philosophy, The University of Texas at Austin, 2003.
    [26] C. G. Rylander, D. P. Davé, T. Akkin, T. E. Milner, K. R. Diller, and A. J. Welch, "Quantitative phase-contrast imaging of cells with phase-sensitive optical coherence microscopy," Optics Letters, vol. 29, pp. 1509-1511, 2004.
    [27] C. Joo, T. Akkin, B. Cense, B. H. Park, and J. F. d. Boer, "Spectral-domain optical coherence phase microscopy for quantitative phase-contrast imaging," Optics Letters, vol. 30, pp. 2131-2133, 2005.
    [28] S. Yun, G. Tearney, J. d. Boer, N. Iftimia, and B. Bouma, "High-speed optical frequency-domain imaging," Optics Express, vol. 11, pp. 2953-2963, 2003.
    [29] J. M. Schmitt, "Optical coherence tomography (OCT): a review," IEEE J. Sel. Top. Quantum Electron., vol. 5, pp. 1205-1215, 1999.
    [30] K. Takada, H. Yamada, and M. Horiguchi, "Optical low coherence reflectometer using [3×3] fiber coupler," Photonics Technology Letters, IEEE, vol. 6, pp. 1014-1016, 1994.
    [31] J. M. Schmitt, "Compact in-line interferometer for low-coherence reflectometry," Optics Letters, vol. 20, pp. 419-421, 1995.
    [32] J. M. C. 著 and 徐. 譯, in 繞射物理學, 國立編譯館, 2001.
    [33] B. E. Bouma and G. J. Tearney, Handbook of Optical Coherence Tomography. New York: Marcel Dekker, 2001.
    [34] K. Takada, H. Yamada, Y. Hibino, and S. Mitachi, "Range extension in optical low coherence reflectometry achieved by using a pair of retroreflectors," Electronics Letters, vol. 31, pp. 1565-1567, 1995.
    [35] Y. Pan, E. Lankenou, J. Welzel, R. Birngruber, and R. Engelhardt, "Optical coherence-gated imaging of biological tissues," IEEE J. Sel. Top. Quantum Electron., vol. 2, pp. 1029-1034, 1996.
    [36] P. Klvekorn and J. Munch, "Variable Optical Delay Line with Diffraction-Limited Autoalignment," Applied Optics, vol. 37, pp. 1903-1904, 1998.
    [37] P. Koch, "A novel approach to optical delay lines," Personal communication, 1999.
    [38] D. C. Edelstein, R. B. Romney, and M. Scheuermann, "Rapid programmable 300 ps optical delay scanner and signal-averaging system for ultrafast measurements," Review of Scientific Instruments, vol. 62, pp. 579-583, 1991.
    [39] P. Chavanne, P. Bonvin, R. Gianotti, and R. P. Salath´e, "High speed high precision broad band reflectometer," Opt. Soc. Conf. Applied Optics and Optoelectronics, York, U.K., pp. 399-400, 1994.
    [40] J. Ballif, R. Gianotti, P. Chavanne, R. Wlti, and R. P. Salath, "Rapid and scalable scans at 21 m/s in optical low-coherence reflectometry," Optics Letters, vol. 22, pp. 757-759, 1997.
    [41] N. Delachenal, R. Gianotti, R. Walti, H. Limberger, and R. P. Salathe, "Constant high-speed optical low-coherence reflectometry over 0.12 m scan range," Electronics Letters, vol. 33, pp. 2059-2061, 1997.
    [42] F. Lindgren, R. Gianotti, R. Walti, R. P. Salathe, A. Haas, M. Nussberger, M. L. Schmatz, and W. Bachtold, "-78-dB shot-noise limited optical low-coherence reflectometry at 42-m/s scan speed," Photonics Technology Letters, IEEE, vol. 9, pp. 1613-1615, 1997.
    [43] B. S. Chin, "Achieving variation of the optical path length by a few millimeters at millisecond rates for imaging of turbid media and optical interferometry:a new technique," Optics Letters, vol. 22, pp. 665-667, 1997.
    [44] J. Szydlo, N. Delachenal, R. Gianotti, R. Wälti, H. Bleuler, and R. P. Salath, "Air-turbine driven optical low-coherence reflectometry at 28.6-kHz scan repetition rate," Optics Communications, vol. 154, pp. 1-4, 1998.
    [45] V. Gelikonov, A. Sergeev, G. Gelikonov, F. Feldchtein, N. Gladkova, J. Ioannovich, K. Fragia, and T. Pirza, "Compact fast-scanning OCT device for in vivo biotissue imaging," in Lasers and Electro-Optics, 1996. CLEO '96., 1996, pp. 58-59.
    [46] G. J. Tearney, B. E. Bouma, S. A. Boppart, B. Golubovic, E. A. Swanson, and J. G. Fujimoto, "Rapid acquisition of in vivo biological images by use of optical coherence tomography," Optics Letters, vol. 21, pp. 1408-1410, 1996.
    [47] L. A. Ferreira, J. L. Santos, and F. Farahi, "Polarization insensitive fiber-optic white-light interferometry," Optics Communications, vol. 114, pp. 386-392, 1995.
    [48] F. Feldchtein, in Personal communication, 1999.
    [49] A. M. Weiner, D. E. Leaird, J. S. Patel, and J. R. Wullert, "Programmable femtosecond pulse shaping by use of a multielement liquid-crystal phase modulator," Optics Letters, vol. 15, pp. 326-328, 1990.
    [50] K. F. Kwong, D. Yankelevich, K. C. Chu, J. P. Heritage, and A. Dienes, "400-Hz mechanical scanning optical delay line," Optics Letters, vol. 18, pp. 558-560, 1993.
    [51] K. C. Chu, K. Liu, J. P. Heritage, and A. Dienes, "Scanning femtosecond optical delay with 1000×pulse width excursion," in Presented at Conference on Lasers and Electro-Optics, 1994.
    [52] A. Rollins, S. Yazdanfar, M. Kulkarni, R. Ung-Arunyawee, and J. Izatt, "In vivo video rate optical coherence tomography," Optics Express, vol. 3, pp. 219-229, 1998.
    [53] G. J. Tearney, B. E. Bouma, and J. G. Fujimoto, "High-speed phase- and group-delay scanning with a grating-based phase controldelay line," Optics Letters, vol. 22, pp. 1811-1813, 1997.
    [54] Y. Zhao, Z. Chen, C. Saxer, S. Xiang, J. F. d. Boer, and J. S. Nelson, "Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity," Optics Letters, vol. 25, pp. 114-116, 2000.
    [55] A. M. Rollins and J. A. Izatt, "Optimal interferometer designs for optical coherence tomography," Optics Letters, vol. 24, pp. 1484-1486, 1999.
    [56] A. G. Podoleanu, "Unbalanced versus balanced operation in an optical coherence tomography system," Applied Optics, vol. 39, pp. 173-182, 2000.
    [57] A. F. Fercher, J. Biomed. Opt., vol. 1, pp. 157-173, 1996.
    [58] E. Hecht, OPTICS: Addison Wesley, International Edition, Fourth Edition.
    [59] A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, "Optical coherence tomography-principles and applications," Rep. Prog. Phys., vol. 66, pp. 239-303, 2003.
    [60] N. G. Chen and Q. Zhu, "Rotary mirror array for high-speed optical coherence tomography," Optics Letters, vol. 27, pp. 607-609, 2002.
    [61] M. J. Wolf, H. Amrein, J. A. Izatt, M. A. Choma, M. C. Reedy, and H. A. Rockman, "From The Cover: Drosophila as a model for the identification of genes causing adult human heart disease," PNAS, vol. 103, pp. 1394-1399, 2006.
    [62] 曹順成, in 科學發展. vol. 409, 民(96.01).

    無法下載圖示 本全文未授權公開
    QR CODE