研究生: |
馬帝亞 De Vivo, Mattia |
---|---|
論文名稱: |
鐵線蟲的研究:臺灣索鐵線蟲 (線形動物門) 的分佈模型、族群遺傳學與其附生生物 De Nematomorpho investigatio: distribution modeling, population genetics and also epibionts of Chordodes formosanus (Phylum Nematomorpha) |
指導教授: |
黃仁磐
Huang, Jen-Pan |
口試委員: |
蔡怡陞
Tsai, Isheng Jason 端木茂寗 Tuanmu, Mao-Ning 邱名鍾 Chiu, Ming-Chung 鄭任鈞 Cheng, Ren-Chung 黃仁磐 Huang, Jen-Pan |
口試日期: | 2023/07/25 |
學位類別: |
博士 Doctor |
系所名稱: |
生命科學系 Department of Life Science |
論文出版年: | 2023 |
畢業學年度: | 111 |
語文別: | 英文 |
論文頁數: | 152 |
英文關鍵詞: | Nematomorpha, Chordodes formosanus, distribution modeling, population genetics, ecology |
研究方法: | 實驗設計法 、 次級資料分析 、 田野調查法 |
DOI URL: | http://doi.org/10.6345/NTNU202301114 |
論文種類: | 學術論文 |
相關次數: | 點閱:243 下載:7 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
The phylum Nematomorpha (commonly known as “horsehair worms” in English and “鐵線蟲” in Taiwan) is known for being one of the most understudied animal groups, especially from what concerns molecular ecology. This is often justified by the fact they do not infect humans or animals related to anthropic activities, although they became famous from popular science perspective due to the fact they seem to induce their arthropod hosts to jump into freshwater. Given our own low knowledge on them, I decided to apply tools that are usually used to work on non-model organisms for filling some gaps.
More precisely, I focused on Chordodes formosanus, which is widely regarded as the most common horsehair worm species in Taiwan. I checked the species’ distribution compared to the ones of its hosts (three Mantodea species) and its population genetics through two different kinds of data (a fragment of the mitochondrial cytochrome c oxidase subunit 1, also known as COXI, and double digest restriction-site associated DNA sequencing, ddRADseq).
For the second part (Chapter 2), my ENMEval models show how hosts and parasite have high distribution overlap, although different metrics can lead to different niche overlap estimation. Furthermore, there are suitable modeled areas for C. formosanus in which it has not been reported yet; this raises concerns for possible extirpation or sampling bias.
For what concerns the second part (which is reported in Chapter 3), both my COXI and ddRADseq dataset tends to consider C. formosanus as a single species, without any population structure based on geography alone in its known Taiwanese range (and, in the case of COXI, whole known range). This is interesting, because non-flying organisms dependent on freshwater usually have dispersal issues in Taiwan, given the orology of the island. Furthermore, calculations of the effective population size (Ne) trends show how the species is decreasing in number of individuals; this is surprising, since it is the most common Nematomorpha taxon in the island, although its numbers are still pretty high. These last results might be congruent with the distribution modeling and may show signs of extirpation in some areas with cultivated land.
Additionally, in Chapter 4 I reported for the first time sac fungi (Division Ascomicota) living on hairworms; more specifically, I collected Colletotrichum fructicola, usually a plant pathogen, growing on the cuticle of living C. formosanus specimens.
My research increased the knowledge on several aspects about Nematomorpha and also laid the foundation for possible protocols to follow for checking on parasites’ distribution and conservation status, which are needed given the fact parasite conservation is a recent conservation sub-field that still needs to have standardized methods.
Achiorno, C. L., de Villalobos, C., & Ferrari, L. (2018). Susceptibility of Chordodes nobilii (Gordiida, Nematomorpha) to three pesticides: Influence of the water used for dilution on endpoints in an ecotoxicity bioassay. Environmental Pollution, 242, 1427-1435. https://doi.org/10.1016/j.envpol.2018.08.006
Aiello‐Lammens, M. E., Boria, R. A., Radosavljevic, A., Vilela, B., & Anderson, R. P. (2015). spThin: an R package for spatial thinning of species occurrence records for use in ecological niche models. Ecography, 38(5), 541-545. https://doi.org/10.1111/ecog.01132
Akaike, H. (1998). Information theory and an extension of the maximumlikelihood principle. In Parzen, E., Tanabe, K., & Kitagawa, G. (Eds.), Selected papers of Hirotugu Akaike. Springer Series in Statistics. New York, NY: Springer, 199– 213. https://doi.org/10.1007/978-1-4612-1694-0
Amundsen, P. A., Lafferty, K. D., Knudsen, R., Primicerio, R., Klemetsen, A., & Kuris, A. M. (2009). Food web topology and parasites in the pelagic zone of a subarctic lake. Journal of Animal Ecology, 78(3), 563-572. https://doi.org/10.1111/j.1365-2656.2008.01518.x
Anaya, C., Schmidt-Rhaesa, A., Hanelt, B., & Bolek, M. G. (2019). A new species of Gordius (Phylum Nematomorpha) from terrestrial habitats in North America. ZooKeys, 892, 59-75. https://doi.org/10.3897/zookeys.892.38868
Anaya, C., Hanelt, B., & Bolek, M. G. (2021). Field and laboratory observations on the life history of Gordius terrestris (phylum Nematomorpha), a terrestrial nematomorph. The Journal of Parasitology, 107(1), 48-58. https://doi.org/10.1645/20-53
Anderson, R. P. (2017). When and how should biotic interactions be considered in models of species niches and distributions?. Journal of Biogeography, 44(1), 8-17. https://doi.org/10.1111/jbi.12825
Andrews, K. R., Good, J. M., Miller, M. R., Luikart, G., & Hohenlohe, P. A. (2016). Harnessing the power of RADseq for ecological and evolutionary genomics. Nature Reviews Genetics, 17(2), 81-92. https://doi.org/10.1038/nrg.2015.28
Arce, A. P., Hörren, T., Schletterer, M., & Kail, J. (2021). How far can EPTs fly? A comparison of empirical flying distances of riverine invertebrates and existing dispersal metrics. Ecological Indicators, 125, 107465. https://doi.org/10.1016/j.ecolind.2021.107465
Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. Journal of Molecular Biology, 215(3), 403-410. https://doi.org/10.1016/S0022-2836(05)80360-2
Auld, S. K., & Tinsley, M. C. (2015). The evolutionary ecology of complex lifecycle parasites: linking phenomena with mechanisms. Heredity, 114(2), 125-132. https://doi.org/10.1038/hdy.2014.84
Bates, O. K., Ollier, S., & Bertelsmeier, C. (2020). Smaller climatic niche shifts in invasive than non-invasive alien ant species. Nature Communications, 11(1), 1-8. https://doi.org/10.1038/s41467-020-19031-1
Battiston, R., Amerini, R., Di Pietro, W., Guariento, L. A., Bolognin, L., & Moretto, E. (2020). A new alien mantis in Italy: is the Indochina mantis Hierodula patellifera chasing the train for Europe?. Biodiversity Data Journal, 8, e50779. https://doi.org/10.3897/BDJ.8.e50779
Benesh, D. P., Parker, G., & Chubb, J. C. (2021). Life‐cycle complexity in helminths: what are the benefits?. Evolution, 75(8), 1936-1952. https://doi.org/10.1111/evo.14299
Beugin, M. P., Gayet, T., Pontier, D., Devillard, S., & Jombart, T. (2018). A fast likelihood solution to the genetic clustering problem. Methods in Ecology and Evolution, 9(4), 1006-1016. https://doi.org/10.1111/2041-210X.12968
Biron, D. G., Marché, L., Ponton, F., Loxdale, H. D., Galéotti, N., Renault, L., ... & Thomas, F. (2005). Behavioural manipulation in a grasshopper harbouring hairworm: a proteomics approach. Proceedings of the Royal Society B: Biological Sciences, 272(1577), 2117-2126.
https://doi.org/10.1098/rspb.2005.3213
Biron, D. G., Ponton, F., Marché, L., Galeotti, N., Renault, L., Demey‐Thomas, E., ... & Thomas, F. (2006). ‘Suicide’of crickets harbouring hairworms: a proteomics investigation. Insect Molecular Biology, 15(6), 731-742.
https://doi.org/10.1111/j.1365-2583.2006.00671.x
Blasco-Costa, I., & Poulin, R. (2017). Parasite life-cycle studies: a plea to resurrect an old parasitological tradition. Journal of Helminthology, 91(6), 647-656. https://doi.org/10.1017/S0022149X16000924
Bolek, M. G., Schmidt-Rhaesa, A., De Villalobos, L. C., & Hanelt, B. (2015). Phylum Nematomorpha. In: Thorp, J; Rogers, D.C. (Eds.), Thorp and Covich's Freshwater Invertebrates, 4th Edition, Academic Press, London, 303–326. https://doi.org/10.1016/B978-0-12-385026-3.00015-2
Bouckaert, R., Vaughan, T. G., Barido-Sottani, J., Duchêne, S., Fourment, M., Gavryushkina, A., ... & Drummond, A. J. (2019). BEAST 2.5: An advanced software platform for Bayesian evolutionary analysis. PLoS Computational Biology, 15(4), e1006650. https://doi.org/10.1371/journal.pcbi.1006650
Brian, J. I., & Aldridge, D. C. (2022). Mussel parasite richness and risk of extinction. Conservation Biology, 36(6), e13979. https://doi.org/10.1111/cobi.13979
Cannon, P. F., Damm, U., Johnston, P. R., & Weir, B. S. (2012). Colletotrichum–current status and future directions. Studies in Mycology, 73(1), 181-213. https://doi.org/10.3114%2Fsim0014
Cano, J., Guarro, J., & Gené, J. (2004). Molecular and morphological identification of Colletotrichum species of clinical interest. Journal of Clinical Microbiology, 42(6), 2450-2454. https://doi.org/10.1128/JCM.42.6.2450-2454.2004
Carbone, I., & Kohn, L. M. (1999). A method for designing primer sets for speciation studies in filamentous ascomycetes. Mycologia, 91(3), 553-556. https://doi.org/10.1080/00275514.1999.12061051
Carlson, C. J., Burgio, K. R., Dougherty, E. R., Phillips, A. J., Bueno, V. M., Clements, C. F., ... & Getz, W. M. (2017). Parasite biodiversity faces extinction and redistribution in a changing climate. Science Advances, 3(9), e1602422.
https://doi.org/10.1126/sciadv.1602422
Carlson, C. J., Hopkins, S., Bell, K. C., Doña, J., Godfrey, S. S., Kwak, M. L., Lafferty, K. D., Moir, M. L., Speer, K. A., Strona, G., Torchin, M., & Wood, C.L. (2020). A global parasite conservation plan. Biological Conservation, 250, 108596. https://doi.org/10.1016/j.biocon.2020.108596
Chakraborty, D., Reddy, M., Tiwari, S., & Umapathy, G. (2019). Land use change increases wildlife parasite diversity in Anamalai Hills, Western Ghats, India. Scientific Reports, 9(1), 11975. https://doi.org/10.1038/s41598-019-48325-8
Chang, K. X., Huang, B. H., Luo, M. X., Huang, C. W., Wu, S. P., Nguyen, H. N., & Lin, S. M. (2021). Niche partitioning among three snail‐eating snakes revealed by dentition asymmetry and prey specialisation. Journal of Animal Ecology, 90, 967–977. https://doi.org/10.1111/1365-2656.13426
Chen, Y. Y., Huang, W., Wang, W. H., Juang, J. Y., Hong, J. S., Kato, T., & Luyssaert, S. (2019). Reconstructing Taiwan’s land cover changes between 1904 and 2015 from historical maps and satellite images. Scientific Reports, 9(1), 1-12. https://doi.org/10.1038/s41598-019-40063-1
Chiu, M. C. (2010). Description of Chordodes formosanus n. sp. (Nematomorpha), its host survey and effects on the morphology of the host mantid, Hierodula formosana. National Taiwan University Master Dissertation(abstract in English, main text in Mandarin Chinese), 1-102. https://doi.org/10.6342/NTU.2010.03178
Chiu, M. C. (2017). Biodiversity of the Taiwanese horsehair worms and the host morphological development manipulated by infection. National Taiwan University Doctoral Dissertation, 1-235. https://doi.org/10.6342/NTU201700507
Chiu, M. C., Huang, C. G., Wu, W. J., & Shiao, S. F. (2011). A new horsehair worm, Chordodes formosanus sp. n.(Nematomorpha, Gordiida) from Hierodula mantids of Taiwan and Japan with redescription of a closely related species, Chordodes japonensis. ZooKeys, 160, 1-22. https://doi.org/10.3897/zookeys.160.2290
Chiu, M. C., Huang, C. G., Wu, W., & Shiao, S. F. (2015). Morphological allometry and intersexuality in horsehair-worm-infected mantids, Hierodula formosana (Mantodea: Mantidae). Parasitology, 142(8), 1130-1142. https://doi.org/10.1017/S0031182015000360
Chiu, M. C., Huang, C. G., Wu, W. J., & Shiao, S. F. (2016). Annual survey of horsehair worm cysts in northern Taiwan, with notes on a single seasonal infection peak in chironomid larvae (Diptera: Chironomidae). The Journal of Parasitology, 102(3), 319-326. https://doi.org/10.1017/S0031182015000360
Chiu, M. C., Huang, C. G., Wu, W. J., & Shiao, S. F. (2017). A new orthopteran-parasitizing horsehair worm, Acutogordius taiwanensis sp. n., with a redescription of Chordodes formosanus and novel host records from Taiwan (Nematomorpha, Gordiida). ZooKeys, 683, 1-23. https://doi.org/10.3897/zookeys.683.12673
Chiu, M. C., Huang, C. G., Wu, W. J., Lin, Z. H., Chen, H. W., & Shiao, S. F. (2020). A new millipede-parasitizing horsehair worm, Gordius chiashanus sp. nov., at medium altitudes in Taiwan (Nematomorpha, Gordiida). ZooKeys, 941, 25-48. https://doi.org/10.3897%2Fzookeys.941.49100
Chung, P. C., Wu, H. Y., Wang, Y. W., Ariyawansa, H. A., Hu, H. P., Hung, T.H., ... & Chung, C. L. (2020). Diversity and pathogenicity of Colletotrichum species causing strawberry anthracnose in Taiwan and description of a new species, Colletotrichum miaoliense sp. nov. Scientific Reports, 10(1), 14664. https://doi.org/10.1038/s41598-020-70878-2
Clark, K., Karsch-Mizrachi, I., Lipman, D. J., Ostell, J., & Sayers, E. W. (2016). GenBank. Nucleic Acids Research, 44(D1), D67-D72. https://doi.org/10.1093/nar/gkv1276
Clement, M., Posada, D. C. K. A., & Crandall, K. A. (2000). TCS: a computer program to estimate gene genealogies. Molecular Ecology, 9(10), 1657-1659. https://doi.org/10.1046/j.1365-294x.2000.01020.x
Cochran, P. A. (2007). Secondary predation on the horsehair worm Gordius robustus (Nematomorpha: Gordiida). The Great Lakes Entomologist, 40(1 & 2),9. https://scholar.valpo.edu/tgle/vol40/iss1/9/
Cochran, P. A., Kinziger, A. P., & Poly, W. J. (1999). Predation on horsehair worms (Phylum Nematomorpha). Journal of Freshwater Ecology, 14(2), 211-218. https://doi.org/10.1080/02705060.1999.9663672
Cort, W. W. (1915). Gordius larvae parasitic in a trematode. The Journal of Parasitology, 1(4), 198. https://doi.org/10.2307/3270808
Criscione, C. D. (2013). Genetic epidemiology of Ascaris: cross-transmission between humans and pigs, focal transmission, and effective population size. In: Holland C. (Ed.), Ascaris: The Neglected Parasite, Elsevier, 203-230. https://doi.org/10.1016/B978-0-12-396978-1.00008-2
Criscione, C. D. (2016). History of microevolutionary thought in parasitology: The integration of molecular population genetics. In Janovy Jr., J; Esch GW (Eds), A Century of Parasitology: Discoveries, Ideas and Lessons Learned by Scientists Who Published in The Journal of Parasitology, 1914-2014, Wiley, Chichester, UK, 93-109. https://doi.org/10.1002/9781118884799.ch7
Criscione, C. D., & Blouin, M. S. (2005). Effective sizes of macroparasite populations: a conceptual model. Trends in Parasitology, 21(5), 212-217. https://doi.org/10.1016/j.pt.2005.03.002
Criscione, C. D., Poulin, R., & Blouin, M. S. (2005). Molecular ecology of parasites: elucidating ecological and microevolutionary processes. Molecular Ecology, 14(8), 2247-2257. https://doi.org/10.1111/j.1365-294X.2005.02587.x
Cristofari, R., Liu, X., Bonadonna, F., Cherel, Y., Pistorius, P., Le Maho, Y., Raybaud, V., Stenseth, N. C., Le Bohec, C., & Trucchi, E. (2018). Climate-driven range shifts of the king penguin in a fragmented ecosystem. Nature Climate Change, 8(3), 245–251. https://doi.org/10.1038/s41558-018-0084-2
Cunha, T. J., De Medeiros, B. A. S., Lord, A., Sørensen, M. V., & Giribet, G. (2023). Rampant loss of universal metazoan genes revealed by a chromosome-level genome assembly of the parasitic Nematomorpha. Current Biology,S0960982223009089. https://doi.org/10.1016/j.cub.2023.07.003
Dalapicolla, J., do Prado, J. R., Percequillo, A. R., & Knowles, L. L. (2021). Functional connectivity in sympatric spiny rats reflects different dimensions of Amazonian forest‐association. Journal of Biogeography, 48(12), 3196-3209. https://doi.org/10.1111/jbi.14281
Damm, U., Sun, Y. C., & Huang, C. J. (2020). Colletotrichum eriobotryae sp. nov. and C. nymphaeae, the anthracnose pathogens of loquat fruit in central Taiwan, and their sensitivity to azoxystrobin. Mycological Progress, 19(4), 367-380. https://doi.org/10.1007/s11557-020-01565-9
de Araújo, C. B., Marcondes‐Machado, L. O., & Costa, G. C. (2014). The importance of biotic interactions in species distribution models: a test of the Eltonian noise hypothesis using parrots. Journal of Biogeography, 41(3), 513-523. https://doi.org/10.1111/jbi.12234
De Vivo, M., & Huang, J.-P. (2020). Preliminary molecular data on Taiwanese hairworms and their hosts. Poster, The 41st Annual Meeting of Taiwan
Entomological Society. https://www.researchgate.net/publication/344736593_Preliminary_molecular_data_on_Taiwanese_hairworms_and_their_hosts
De Vivo, M., & Huang, J.-P. (2022). Modeling the geographical distributions of Chordodes formosanus and its mantis hosts in Taiwan, with considerations for their niche overlaps. Ecology and Evolution, 12, e9546. https://doi.org/10.1002/ece3.9546
De Vivo, M., Wang, W. H., Chen, K. H., & Huang, J. P. (2021). First detection of Colletotrichum fructicola (Ascomycota) on horsehair worms (Nematomorpha). Biodiversity Data Journal, 9, e72798. https://doi.org/10.3897%2FBDJ.9.e72798
De Vivo, M., Chen, W. Y., & Huang, J. P. (2023). Testing the efficacy of different molecular tools for parasite conservation genetics: a case study using
horsehair worms (Phylum Nematomorpha). Parasitology (accepted). https://doi.org/10.1017/S0031182023000641
Dobson, A., Lafferty, K. D., Kuris, A. M., Hechinger, R. F., & Jetz, W. (2008). Homage to Linnaeus: how many parasites? How many hosts?. Proceedings of the National Academy of Sciences, 105(supplement_1), 11482-11489. https://doi.org/10.1073/pnas.0803232105
Doherty, J. F. (2020). When fiction becomes fact: exaggerating host manipulation by parasites. Proceedings of the Royal Society B, 287(1936), 20201081. https://doi.org/10.1098/rspb.2020.1081
Doherty, J. F., & Poulin, R. (2022). The return to land: association between hairworm infection and aquatic insect development. Parasitology Research, 121(2), 667-673. https://doi.org/10.1007/s00436-021-07410-6
Doherty, J. F., Chai, X., & Poulin, R. (2019). Varying levels of melanotic encapsulation of gordiid hairworm cysts (Nematomorpha) by aquatic insect larvae: seasonal and host effects. Journal of Invertebrate Pathology, 168, 107258. https://doi.org/10.1016/j.jip.2019.107258
Doherty, J.-F., Filion, A., Bennett, J., Raj Bhattarai, U., Chai, X., De Angeli Dutra, D., Donlon, E., Jorge, F., Milotic, M., Park, E., Sabadel, A. J. M., Thomas, L. J., & Poulin, R. (2021). The people vs science: Can passively crowdsourced internet data shed light on host–parasite interactions? Parasitology, 148(11), 1313–1319. https://doi.org/10.1017/S0031182021000962
Doherty, J.-F., Filion, A., & Poulin, R. (2022). Infection patterns and new definitive host records for New Zealand gordiid hairworms (Phylum Nematomorpha). Parasitology International, 90, 102598. https://doi.org/10.1016/j.parint.2022.102598
Doherty, J. F., Bhattarai, U. R., Ferreira, S., Poulin, R., Gemmell, N. J., & Dowle, E. J. (2023). The proof is in the poo: non‐invasive method to detect
endoparasitic infection. Molecular Ecology Resources. https://doi.org/10.1111/1755-0998.13763
Doña, J., & Johnson, K. P. (2020). Assessing symbiont extinction risk using cophylogenetic data. Biological Conservation, 250, 108705. https://doi.org/10.1016/j.biocon.2020.108705
Dormann, C. F., Bobrowski, M., Dehling, D. M., Harris, D. J., Hartig, F., Lischke, H., ... & Kraan, C. (2018). Biotic interactions in species distribution modelling: 10 questions to guide interpretation and avoid false conclusions. Global Ecology and Biogeography, 27(9), 1004-1016. https://doi.org/10.1111/geb.12759
Dougherty, E. R., Carlson, C. J., Bueno, V. M., Burgio, K. R., Cizauskas, C. A., Clements, C. F., ... & Harris, N. C. (2016). Paradigms for parasite conservation. Conservation Biology, 30(4), 724-733. https://doi.org/10.1111/cobi.12634
Dowle, E. J., Morgan-Richards, M., & Trewick, S. A. (2014). Morphological differentiation despite gene flow in an endangered grasshopper. BMC Evolutionary Biology, 14(1), 216. https://doi.org/10.1186/s12862-014-0216-x
Drummond, A. J., Rambaut, A., Shapiro, B., & Pybus, O. G. (2005). Bayesian coalescent inference of past population dynamics from molecular sequences. Molecular Biology and Evolution, 22(5), 1185-1192. https://doi.org/10.1093/molbev/msi103
Drummond, A. J., Ho, S. Y. W., Phillips, M. J., & Rambaut, A. (2006). Relaxed phylogenetics and dating with confidence. PLoS Biology, 4(5), e88. https://doi.org/10.1371/journal.pbio.0040088
Dunlop, J. A., & Watson, M. J. (2022). The hitchhiker's guide to Australian conservation: A parasitological perspective on fauna translocations. Austral Ecology, 47(4), 748-764. https://doi.org/10.1111/aec.13171
Dunn, C. W., Hejnol, A., Matus, D. Q., Pang, K., Browne, W. E., Smith, S. A., ... & Giribet, G. (2008). Broad phylogenomic sampling improves resolution of the animal tree of life. Nature, 452(7188), 745-749. https://doi.org/10.1038/nature06614
Dunn, R. R., Harris, N. C., Colwell, R. K., Koh, L. P., & Sodhi, N. S. (2009). The sixth mass coextinction: are most endangered species parasites and
mutualists?. Proceedings of the Royal Society B: Biological Sciences, 276(1670), 3037-3045. https://doi.org/10.1098/rspb.2009.0413
Eaton, D. A. R., & Overcast, I. (2020). ipyrad: Interactive assembly and analysis of RADseq datasets. Bioinformatics, 36(8), 2592–2594. https://doi.org/10.1093/bioinformatics/btz966
Edler, D., Klein, J., Antonelli, A., & Silvestro, D. (2021). raxmlGUI 2.0: A graphical interface and toolkit for phylogenetic analyses using RAxML. Methods in Ecology and Evolution, 12(2), 373-377. https://doi.org/10.1111/2041-210X.13512
Efeykin, B. D., Schmatko, V. Y., & Spiridonov, S. E. (2016). Comparative phylogenetic informativity of single ribosomal cluster regions in freshwater horsehair worms (Gordiacea, Nematomorpha). Biology Bulletin, 43(1), 34-41. https://doi.org/10.1134/S1062359016010040
Eleftheriadi, K., Guiglielmoni, N., Salces-Ortiz, J., Vargas-Chavez, C., Martínez-Redondo, G. I., Gut, M., Flot, J.-F., Schmidt-Rhaesa, A., & Fernández, R. (2023). The genome sequence of the Montseny horsehair worm, Gordionus montsenyensis sp. nov., a key resource to investigate Ecdysozoa evolution. bioRxiv, 2023.06.26.546503. https://doi.org/10.1101/2023.06.26.546503
Ellis, V. A., Collins, M. D., Medeiros, M. C., Sari, E. H., Coffey, E. D., Dickerson, R. C., ... & Ricklefs, R. E. (2015). Local host specialization, host-
switching, and dispersal shape the regional distributions of avian haemosporidian parasites. Proceedings of the National Academy of Sciences, 112(36), 11294-11299. https://doi.org/10.1073/pnas.1515309112
Fair, J. M., Hanelt, B., & Burnett, K. (2010). Horsehair Worms (Gordius robustus) in Nests of the Western Bluebird (Sialia mexicana): Evidence for Anti-Predator Avoidance?. Journal of Parasitology, 96(2), 429-430. https://doi.org/10.1645/GE-2313.1
Ferrington, L.C. (2008). Global diversity of non-biting midges (Chironomidae; Insecta-Diptera) in freshwater. Hydrobiologia, 595, 447–455. https://doi.org/10.1007/s10750-007-9130-1
Fick, S. E., & Hijmans, R. J. (2017). WorldClim 2: new 1‐km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37(12), 4302-4315. https://doi.org/10.1002/joc.5086
Filz, K. J., & Schmitt, T. (2015). Niche overlap and host specificity in parasitic Maculinea butterflies (Lepidoptera: Lycaenidae) as a measure for potential extinction risks under climate change. Organisms Diversity & Evolution, 15(3), 555-565. https://doi.org/10.1007/s13127-015-0210-1
Fisher, M. C., Henk, D., Briggs, C. J., Brownstein, J. S., Madoff, L. C., McCraw, S. L., & Gurr, S. J. (2012). Emerging fungal threats to animal, plant and ecosystem health. Nature, 484(7393), 186-194. https://doi.org/10.1038/nature10947
Foard, T., & Auth, D. L. (1990). Food habits and gut parasites of the salamander, Stereochilus marginatus. Journal of Herpetology, 24(4), 428-431. https://doi.org/10.2307/1565067
Folmer, O., Black, M., Hoeh, W., Lutz, R., & Vrijenhoek, R. (1994). DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology, 3(5), 294–299. https://www.researchgate.net/publication/15316743_DNA_primers_for_amplifi
cation_of_mitochondrial_Cytochrome_C_oxidase_subunit_I_from_diverse_metazoan_invertebrates
Fourcade, Y., Winsor, L., & Justine, J. L. (2022). Hammerhead worms everywhere? Modelling the invasion of bipaliin flatworms in a changing climate. Diversity and Distributions, 28(4), 844-858. https://doi.org/10.1111/ddi.13489
Franklin, I.R. (1980). Evolutionary change in small populations. In: Soule, M.E.; Wilcox, B.A. (Eds.), Conservation Biology - An evolutionary-ecological perspective, Sunderland, Massachusetts, U.S.A: Sinauer Associates, 135-149. https://www.regulations.gov/document/FWS-R4-ES-2014-0065-0208
Galbreath, K. E., Toman, H. M., Li, C., & Hoberg, E. P. (2020). When parasites persist: tapeworms survive host extinction and reveal waves of dispersal across Beringia. Proceedings of the Royal Society B, 287(1941), 20201825. https://doi.org/10.1098/rspb.2020.1825
Gardes, M., & Bruns, T. D. (1993). ITS primers with enhanced specificity for basidiomycetes‐application to the identification of mycorrhizae and rusts. Molecular Ecology, 2(2), 113-118. https://doi.org/10.1111/j.1365-294x.1993.tb00005.x
Giribet, G., & Edgecombe, G. D. (2020). The Invertebrate Tree of Life. Princeton University Press, Princeton. https://doi.org/10.1515/97806911970
Glass, G. E., Ganser, C., & Kessler, W. H. (2021). Validating Species Distribution Models with Standardized Surveys for Ixodid Ticks in Mainland Florida. Journal of Medical Entomology, 58(3), 1345-1351. https://doi.org/10.1093/jme/tjaa282
Gómez, A., & Nichols, E. (2013). Neglected wild life: parasitic biodiversity as a conservation target. International Journal for Parasitology: Parasites and Wildlife, 2, 222-227. https://doi.org/10.1016/j.ijppaw.2013.07.002
González, J. B., Lambert, C. A., Foley, A. M., & Hajek, A. E. (2023). First report of Colletotrichum fioriniae infections in brown marmorated stink bugs, Halyomorpha halys. Journal of Invertebrate Pathology, 107939. https://doi.org/10.1016/j.jip.2023.107939
Gusmão, R. A., Hernandes, F. A., Vancine, M. H., Naka, L. N., Doña, J., & Gonçalves‐Souza, T. (2020). Host diversity outperforms climate as a global driver of symbiont diversity in the bird‐feather mite system. Diversity and Distributions, 27(3), 416-426. https://doi.org/10.1111/ddi.13201
Hanelt, B. (2009a). An anomaly against a current paradigm–extremely low rates of individual fecundity variability of the Gordian worm (Nematomorpha: Gordiida). Parasitology, 136(2), 211-218. https://doi.org/10.1017/S0031182008005337
Hanelt, B. (2009b). Hyperparasitism by Paragordius varius (Nematomorpha: Gordiida) larva of monostome redia (Trematoda: Digenea). Journal of Parasitology, 95(1), 242-243. https://doi.org/10.1645/ge-1683.1
Hanelt, B., & Janovy Jr., J. (2003). Spanning the gap: experimental determination of paratenic host specificity of horsehair worms (Nematomorpha: Gordiida). Invertebrate Biology, 122(1), 12-18. http://doi.org/10.1111/j.1744-7410.2003.tb00068.x
Hanelt, B., Bolek, M. G., & Schmidt-Rhaesa, A. (2012). Going solo: Discovery of the first parthenogenetic gordiid (Nematomorpha: Gordiida). PLoS ONE, 7(4), e34472. https://doi.org/10.1371/journal.pone.0034472
Hanelt, B., Schmidt-Rhaesa, A., & Bolek, M. G. (2015). Cryptic species of hairworm parasites revealed by molecular data and crowdsourcing of specimen collections. Molecular Phylogenetics and Evolution, 82, 211-218. https://doi.org/10.1016/j.ympev.2014.09.010
Harkins, C., Shannon, R., Papeş, M., Schmidt-Rhaesa, A., Hanelt, B., & Bolek, M. G. (2016). Using Gordiid cysts to discover the hidden diversity, potential distribution, and new species of Gordiids (Phylum Nematomorpha). Zootaxa, 4088(4), 515-530. https://doi.org/10.11646/zootaxa.4088.4.3
Haverkost, T. R., Gardner, S. L., & Townsend Peterson, A. (2010). Predicting the distribution of a parasite using the ecological niche model, GARP. Revista Mexicana de Biodiversidad, 81(3), 895-902. https://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1870-34532010000300029
Herbison, R., Evans, S., Doherty, J. F., Algie, M., Kleffmann, T., & Poulin, R. (2019). A molecular war: convergent and ontogenetic evidence for adaptive host manipulation in related parasites infecting divergent hosts. Proceedings of the Royal Society B, 286(1915), 20191827. https://doi.org/10.1098/rspb.2019.1827
Hijmans, R. J. (maintainer) (2021). Package ‘raster’. R package. https://cran.r-project.org/web/packages/raster/raster.pdf
Ho, S. Y., & Shapiro, B. (2011). Skyline‐plot methods for estimating demographic history from nucleotide sequences. Molecular Ecology Resources, 11(3), 423-434. https://doi.org/10.1111/j.1755-0998.2011.02988.x
Holt, C. D. S., Nevin, O. T., Smith, D., & Convery, I. (2018). Environmental niche overlap between snow leopard and four prey species in Kazakhstan. Ecological Informatics, 48, 97-103. https://doi.org/10.1016/j.ecoinf.2018.09.005
Hopkins, S., & Kwak, M. (2023). New IUCN Species Survival Commission Parasite Specialist Group launched in 2023. Oryx, 57(3), 283–283. https://doi.org/10.1017/S0030605323000169
Howard, R. J., Giacomelli, M., Lozano-Fernandez, J., Edgecombe, G. D., Fleming, J. F., Kristensen, R. M., ... & Pisani, D. (2022). The Ediacaran origin of Ecdysozoa: integrating fossil and phylogenomic data. Journal of the Geological Society, 179(4). https://doi.org/10.1144/jgs2021-107
Hudson, A. J., & Floate, K. D. (2009). Further evidence for the absence of bacteria in horsehair worms (Nematomorpha: Gordiidae). Journal of Parasitology, 95(6), 1545–1547. https://doi.org/10.1645/GE-2145.1
Jessup, D. A., Miller, M., Ames, J., Harris, M., Kreuder, C., Conrad, P. A., & Mazet, J. A. (2004). Southern sea otter as a sentinel of marine ecosystem health. EcoHealth, 1(3), 239-245. https://doi.org/10.1007/s10393-004-0093-7
Kakui, K., Fukuchi, J., & Shimada, D. (2021). First report of marine horsehair worms (Nematomorpha: Nectonema) parasitic in isopod crustaceans. Parasitology Research, 120(7), 2357-2362. https://doi.org/10.1007/s00436-021-07213-9
Kass, J. M., Anderson, R. P., Espinosa‐Lucas, A., Juárez‐Jaimes, V., Martínez‐Salas, E., Botello, F., ... & Sánchez‐Cordero, V. (2020). Biotic predictors with phenological information improve range estimates for migrating monarch butterflies in Mexico. Ecography, 43(3), 341-352. https://doi.org/10.1111/ecog.04886
Kass, J. M., Muscarella, R., Galante, P. J., Bohl, C. L., Pinilla‐Buitrago, G. E., Boria, R. A., Soley- Guardia, M., & Anderson, R. P. (2021). ENMeval 2.0: redesigned for customizable and reproducible modeling of species’ niches and distributions. Methods in Ecology and Evolution, 12, 1602– 1608. https://doi.org/10.1111/2041-210X.13628
Katoh, K., & Standley, D. M. (2013). MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability, Molecular Biology and Evolution, 30(4), 772-780. https://doi.org/10.1093/molbev/mst010
Kawashima, I. (2011). A record of Acromantis japonica Westwood, 1989 (Mantodea, Hymenopodidae) from the Miura Peninsula, Kanagawa Prefecture. Natural History Report of Kanagawa (abstract in English, main text in Japanese), 2011(32), 79-80. https://doi.org/10.32225/nkpmnh.2011.32_79
King, T. M., Kennedy, M., & Wallis, G. P. (2003). Phylogeographic genetic analysis of the alpine weta, Hemideina maori: evolution of a colour polymorphism and origins of a hybrid zone. Journal of the Royal Society of New Zealand, 33(4), 715–729. https://doi.org/10.1080/03014223.2003.9517755
Koh, L. P., Dunn, R. R., Sodhi, N. S., Colwell, R. K., Proctor, H. C., & Smith, V. S. (2004). Species coextinctions and the biodiversity crisis. Science, 305(5690), 1632-1634. https://doi.org/10.1126/science.1101101
Konrad, A., Brady, M. J., Bergthorsson, U., & Katju, V. (2019). Mutational landscape of spontaneous base substitutions and small indels in experimental Caenorhabditis elegans populations of differing size. Genetics, 212(3), 837-854. https://doi.org/10.1534/genetics.119.302054
Kramer‐Schadt, S., Niedballa, J., Pilgrim, J. D., Schröder, B., Lindenborn, J., Reinfelder, V., ... & Wilting, A. (2013). The importance of correcting for sampling bias in MaxEnt species distribution models. Diversity and distributions, 19(11), 1366-1379. https://doi.org/10.1111/ddi.12096
Kumar, S., Stecher, G., Li, M., Knyaz, C., & Tamura, K. (2018). MEGA X: molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution, 35(6), 1547-1549. https://doi.org/10.1093/molbev/msy096
Kuris, A. M., Hechinger, R. F., Shaw, J. C., Whitney, K. L., Aguirre-Macedo, L., Boch, C. A., ... & Lafferty, K. D. (2008). Ecosystem energetic implications of parasite and free-living biomass in three estuaries. Nature, 454(7203), 515-518. https://doi.org/10.1038/nature06970
Kwak, M. L., Heath, A. C., & Cardoso, P. (2020). Methods for the assessment and conservation of threatened animal parasites. Biological Conservation, 248, 108696. https://doi.org/10.1016/j.biocon.2020.108696
Lafferty, K. D., Allesina, S., Arim, M., Briggs, C. J., De Leo, G., Dobson, A.P., ... & Thieltges, D. W. (2008). Parasites in food webs: the ultimate missing links. Ecology letters, 11(6), 533-546. https://doi.org/10.1111/j.1461-0248.2008.01174.x
Laumer, C. E., Fernández, R., Lemer, S., Combosch, D., Kocot, K. M., Riesgo, A., ... & Giribet, G. (2019). Revisiting metazoan phylogeny with genomic sampling of all phyla. Proceedings of the royal society B, 286(1906), 20190831. https://doi.org/10.1098/rspb.2019.0831
Lee, S. J., Hwang, J. M., & Bae, Y. J. (2008). Life history of a lowland burrowing mayfly, Ephemera orientalis (Ephemeroptera: Ephemeridae), in a Korean stream. Hydrobiologia, 596(1), 279–288. https://doi.org/10.1007/s10750-007-9103-4
Legendre, S., Schoener, T. W., Clobert, J., & Spiller, D. A. (2008). How is extinction risk related to population‐size variability over time? A family of models for species with repeated extinction and immigration. The American Naturalist, 172(2), 282–298. https://doi.org/10.1086/589454
Leigh, J. W., & Bryant, D. (2015). POPART: full-feature software for haplotype network construction. Methods in Ecology and Evolution, 6(9), 1110-1116. https://doi.org/10.1111/2041-210X.12410
Leroy, B., Delsol, R., Hugueny, B., Meynard, C. N., Barhoumi, C., Barbet‐Massin, M., & Bellard, C. (2018). Without quality presence–absence data, discrimination metrics such as TSS can be misleading measures of model performance. Journal of Biogeography, 45(9), 1994-2002. https://onlinelibrary.wiley.com/doi/full/10.1111/jbi.13402
Lin, S.-M. (2020). Data from: Niche partitioning among three snail-eating snakes revealed by dentition asymmetry and prey specialisation. Dryad Digital Repository, https://doi.org/10.5061/dryad.zgmsbcc98
Lin, L. Y., Yang, C. C., Wan, J. Y., Chang, T. C., & Lee, J. Y. Y. (2015). Cutaneous infection caused by plant pathogen Colletotrichum gloeosporioides. JAMA Dermatology, 151(12), 1383-1384. https://doi.org/10.1001/jamadermatol.2015.2102
Lin, S. R., Yu, S. Y., Chang, T. D., Lin, Y. J., Wen, C. J., & Lin, Y. H. (2021). First report of anthracnose caused by Colletotrichum fructicola on tea in Taiwan. Plant Disease, 105(3), 710-710. https://doi.org/10.1094/PDIS-06-20-1288-PDN
Lischer, H. E., & Excoffier, L. (2012). PGDSpider: an automated data conversion tool for connecting population genetics and genomics programs. Bioinformatics, 28(2), 298-299. https://doi.org/10.1093/bioinformatics/btr642
Liu, X., & Fu, Y. X. (2020). Stairway Plot 2: demographic history inference with folded SNP frequency spectra. Genome Biology, 21(1), 1-9. https://doi.org/10.1186/s13059-020-02196-9
Liu, Q.-P., Liu, Z.-J., Wang, G.-L., & Yin, Z.-X. (2021). Taxonomic revision of the praying mantis subfamily Hierodulinae of China (Mantodea: Mantidae). Zootaxa, 4951(3), 401-433. https://doi.org/10.11646/zootaxa.4951.3.1
Lourenço-de-Moraes, R., Lansac-Toha, F. M., Schwind, L. T. F., Arrieira, R. L., Rosa, R. R., Terribile, L. C., ... & Bailly, D. (2019). Climate change will decrease the range size of snake species under negligible protection in the Brazilian Atlantic Forest hotspot. Scientific Reports, 9(1), 1-14. https://doi.org/10.1038/s41598-019-44732-z
LTN. (2015). 台東縣成功鎮桔⼦子⼭山取⽔水⼝口 疑鐵線蟲現蹤—地⽅方 (local news in Mandarin Chinese). https://news.ltn.com.tw/news/local/paper/906348. Accessed 8th March 2023.
Maher, S. P., Ellis, C., Gage, K. L., Enscore, R. E., & Peterson, A. T. (2010). Range-wide determinants of plague distribution in North America. The American Journal of Tropical Medicine and Hygiene, 83(4), 736-742. https://doi.org/10.4269%2Fajtmh.2010.10-0042
Malinsky, M., Trucchi, E., Lawson, D. J., & Falush, D. (2018). RADpainter and fineRADstructure: Population Inference from RADseq Data. Molecular Biology and Evolution, 35(5), 1284–1290. https://doi.org/10.1093/molbev/msy023
Manire, C. A., Rhinehart, H. L., Sutton, D. A., Thompson, E. H., Rinaldi, M. G., Buck, J. D., & Jacobson, E. (2002). Disseminated mycotic infection caused by Colletotrichum acutatum in a Kemp's ridley sea turtle (Lepidochelys kempi). Journal of Clinical Microbiology, 40(11), 4273-4280. https://doi.org/10.1128/JCM.40.11.4273-4280.2002
Mapalo, M. A., Arakawa, K., Baker, C. M., Persson, D. K., Mirano-Bascos, D., & Giribet, G. (2020). The unique antimicrobial recognition and signaling pathways in tardigrades with a comparison across Ecdysozoa. G3: Genes, Genomes, Genetics, 10(3), 1137-1148. https://doi.org/10.1534/g3.119.400734
Marandel, F., Charrier, G., Lamy, J. B., Le Cam, S., Lorance, P., & Trenkel, V. M. (2020). Estimating effective population size using RADseq: Effects of SNP selection and sample size. Ecology and Evolution, 10(4), 1929-1937. https://doi.org/10.1002/ece3.6016
Marcelino, J., Giordano, R., Gouli, S., Gouli, V., Parker, B. L., Skinner, M., ...& Cesnik, R. (2008). Colletotrichum acutatum var. fioriniae (teleomorph: Glomerella acutata var. fioriniae var. nov.) infection of a scale insect. Mycologia, 100(3), 353-374. https://doi.org/10.3852/07-174R
Merow, C., Smith, M. J., & Silander Jr, J. A. (2013). A practical guide to MaxEnt for modeling species’ distributions: what it does, and why inputs and settings matter. Ecography, 36(10), 1058-1069. https://doi.org/10.1111/j.1600-0587.2013.07872.x
Mikhailov, K. V., Efeykin, B. D., Panchin, A. Y., Knorre, D. A., Logacheva, M. D., Penin, A. A., ... & Panchin, Y. V. (2019). Coding palindromes in mitochondrial genes of Nematomorpha. Nucleic Acids Research, 47(13), 6858-6870. https://doi.org/10.1093/nar/gkz517
Miller, M. R., Dunham, J. P., Amores, A., Cresko, W. A., & Johnson, E. A. (2007). Rapid and cost-effective polymorphism identification and genotyping using restriction site associated DNA (RAD) markers. Genome Research, 17(2),240-248. https://doi.org/10.1101/gr.5681207
Milotic, M. (2022). The effect of conservation management on parasite communities. Doctoral dissertation, University of Otago. Retrieved from http://hdl.handle.net/10523/12790
Morrow, C.B. (2019). Thresholding species distribution models. Github. Available at https://babichmorrowc.github.io/post/2019-04-12-sdm-threshold/. Accessed 19 July 2022.
Mugleston, J., Naegle, M., Song, H., Bybee, S. M., Ingley, S., Suvorov, A., & Whiting, M. F. (2016). Reinventing the leaf: multiple origins of leaf-like wings in katydids (Orthoptera: Tettigoniidae). Invertebrate Systematics, 30(4), 335-352. https://doi.org/10.1071/IS15055
Muscarella, R., Galante, P. J., Soley‐Guardia, M., Boria, R. A., Kass, J. M., Uriarte, M., & Anderson, R. P. (2014). ENMeval: An R package for conducting spatially independent evaluations and estimating optimal model complexity for Maxent ecological niche models. Methods in Ecology and Evolution, 5(11), 1198-1205. https://doi.org/10.1111/2041-210X.12261
Naimi, B., Hamm, N. A., Groen, T. A., Skidmore, A. K., & Toxopeus, A. G. (2014). Where is positional uncertainty a problem for species distribution modelling?. Ecography, 37(2), 191-203. https://doi.org/10.1111/j.1600-0587.2013.00205.x
Nei, M., & Li, W. H. (1979). Mathematical model for studying genetic variation in terms of restriction endonucleases. Proceedings of the National Academy of Sciences, 76(10), 5269–5273. https://doi.org/10.1073/pnas.76.10.5269
Ni, S., Doherty, J. F., & Poulin, R. (2021). Convergent patterns of body size variation in distinct parasite taxa with convergent life cycles. Global Ecology and Biogeography, 30(12), 2382-2392. https://doi.org/10.1111/geb.13389
Nierstrasz, H. F. (1907) Die Nematomorpha der Siboga-Expedition. Siboga-Expeditie (In German), 20, 1-22. https://books.google.com.tw/books/about/Die_Nematomorpha_der_Siboga_expedition.html?id=7YI7AQAAMAAJ&redir_esc=y
Nnadi, N. E., & Carter, D. A. (2021). Climate change and the emergence of fungal pathogens. PLoS Pathogens, 17(4), e1009503. https://doi.org/10.1371/journal.ppat.1009503
Nunziata, S. O., & Weisrock, D. W. (2018). Estimation of contemporary effective population size and population declines using RAD sequence data. Heredity, 120(3), 196–207. https://doi.org/10.1038/s41437-017-0037-y
Obayashi, N., Iwatani, Y., Sakura, M., Tamotsu, S., Chiu, M. C., & Sato, T. (2021). Enhanced polarotaxis can explain water-entry behaviour of mantids infected with nematomorph parasites. Current Biology, 31(12), R777-R778. https://doi.org/10.1016/j.cub.2021.05.001
Oku, Y., Fukumoto, S. I., Ohbayashi, M., & Koike, M. (1983). A marine horsehair worm, Nectonema sp., parasitizing atelecyclid crab, Erimacrus isenbeckii, from Hokkaido, Japan. Japanese Journal of Veterinary Research, 31(2), 65-69. https://doi.org/10.14943/jjvr.31.2.65
Palacio, F. X., & Girini, J. M. (2018). Biotic interactions in species distribution models enhance model performance and shed light on natural history of rare birds: a case study using the straight‐billed reedhaunter Limnoctites rectirostris. Journal of Avian Biology, 49(11), e01743. https://doi.org/10.1111/jav.01743
Pappalardo, P., Morales‐Castilla, I., Park, A. W., Huang, S., Schmidt, J. P., & Stephens, P. R. (2020). Comparing methods for mapping global parasite diversity. Global Ecology and Biogeography, 29(1), 182-193. https://doi.org/10.1111/geb.13008
Pearson, R. G., Raxworthy, C. J., Nakamura, M., & Townsend Peterson, A. (2007). Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. Journal of Biogeography, 34(1), 102-117. https://doi.org/10.1111/j.1365-2699.2006.01594.x
Pérez-Pereira, N., Wang, J., Quesada, H., & Caballero, A. (2022). Prediction of the minimum effective size of a population viable in the long term. Biodiversity
and Conservation, 31(11), 2763–2780. https://doi.org/10.1007/s10531-022-02456-z
Peterson, B. K., Weber, J. N., Kay, E. H., Fisher, H. S., & Hoekstra, H. E. (2012). Double digest RADseq: an inexpensive method for de novo SNP discovery and genotyping in model and non model species. PloS One, 7(5), e37135. https://doi.org/10.1371/journal.pone.0037135
Petit‐Marty, N., Vázquez‐Luis, M., & Hendriks, I. E. (2021). Use of the nucleotide diversity in COI mitochondrial gene as an early diagnostic of conservation status of animal species. Conservation Letters, 14(1). https://doi.org/10.1111/conl.12756
Phillips, S. J., Anderson, R. P., & Schapire, R. E. (2006). Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190(3-4), 231-259. https://doi.org/10.1016/j.ecolmodel.2005.03.026
Phillips, S. J., Anderson, R. P., Dudík, M., Schapire, R. E., & Blair, M. E. (2017). Opening the black box: An open‐source release of Maxent. Ecography, 40(7), 887-893. https://doi.org/10.1111/ecog.03049
Poinar, G. (2008). Global diversity of hairworms (Nematomorpha: Gordiaceae) in freshwater. Hydrobiologia, 595(1), 79-83. https://doi.org/10.1007/s10750-007-9112-3
Poinar, G., & Brockerhoff, A. M. (2001). Nectonema zealandica n. sp.(Nematomorpha: Nectonematoidea) parasitising the purple rock crab Hemigrapsus edwardsi (Brachyura: Decapoda) in New Zealand, with notes on the prevalence of infection and host defence reactions. Systematic Parasitology, 50(2), 149-157. https://doi.org/10.1023/A:1011961029290
Poinar Jr, G., & Buckley, R. (2006). Nematode (Nematoda: Mermithidae) and hairworm (Nematomorpha: Chordodidae) parasites in early Cretaceous amber. Journal of Invertebrate Pathology, 93(1), 36-41. https://doi.org/10.1016/j.jip.2006.04.006
Ponton, F., Lebarbenchon, C., Lefèvre, T., Thomas, F., Duneau, D., Marché,L., ... & Biron, D. G. (2006a). Hairworm anti-predator strategy: a study of causes and consequences. Parasitology, 133(5), 631-638. https://doi.org/10.1017/S0031182006000904
Ponton, F., Lebarbenchon, C., Lefèvre, T., Biron, D. G., Duneau, D., Hughes, D. P., & Thomas, F. (2006b). Parasite survives predation on its host. Nature, 440(7085), 756-756. https://doi.org/10.1038/440756a
Ponton, F., Otálora-Luna, F., Lefevre, T., Guerin, P. M., Lebarbenchon, C., Duneau, D., ... & Thomas, F. (2011). Water-seeking behavior in worm-infected crickets and reversibility of parasitic manipulation. Behavioral Ecology, 22(2), 392-400. https://doi.org/10.1093/beheco/arq215
Portela, A. A. B., Dos Santos, T. G., & Dos Anjos, L. A. (2020). Changes in land use affect anuran helminths in the South Brazilian grasslands. Journal of Helminthology, 94, e206. https://doi.org/10.1017/S0022149X20000905
Poulin, R. (1995). Hairworms (Nematomorpha: Gordioidea) infecting New Zealand short-horned grasshoppers (Orthoptera: Acrididae). The Journal of Parasitology, 81(1), 121-122. https://doi.org/10.2307/3284023
Poulin, R. (2007). Evolutionary Ecology of Parasites, 2nd Edition. Princeton University Press, Princeton. https://www.jstor.org/stable/j.ctt7sn0x
Poulin, R. (2021). The rise of ecological parasitology: twelve landmark advances that changed its history. International Journal for Parasitology, 51(13-14), 1073-1084. https://doi.org/10.1016/j.ijpara.2021.07.001
Poulin, R., & Morand, S. (2004). Parasite Biodiversity. Smithsonian Institution. https://books.google.com.tw/books?hl=en&lr=&id=z8JvDwAAQBAJ&oi=fnd&pg=PR7&dq=Parasite+Biodiversity.+Smithsonian+Institution&ots=hWYoZMmiLH&sig=jPh4yXAxexfOyi0CXizg3CZTC5M&redir_esc=y#v=onepage&q=Parasite%20Biodiversity.%20Smithsonian%20Institution&f=false
Preuss, G., & Padial, A. A. (2021). Increasing reality of species distribution models of consumers by including its food resources. Neotropical Biology & Conservation, 16(3), 411-425. https://doi.org/10.3897/neotropical.16.e6489
Radačovská, A., Čisovská Bazsalovicsová, E., Šoltys, K., Štefka, J., Minárik, G., Gustinelli, A., Chugunova, J. K., & Králová-Hromadová, I. (2022). Unique genetic structure of the human tapeworm Dibothriocephalus latus from the Alpine lakes region – a successful adaptation? Parasitology, 149(8), 1106–1118. https://doi.org/10.1017/S0031182022000634
Radosavljevic, A., & Anderson, R. P. (2014). Making better Maxent models of species distributions: complexity, overfitting and evaluation. Journal of Biogeography, 41(4), 629-643. https://doi.org/10.1111/jbi.12227
Rambaut, A. (2018). FigTree, version 1.4.4. Available at: http://tree.bio.ed.ac.uk/software/figtree/
Rentz, D. C. F., & John, B. (1989). Studies in Australian Gryllacrididae: taxonomy, biology, ecology and cytology. Invertebrate Systematics, 3(8), 1053-1210. https://doi.org/10.1071/IT9891053
Rivera-Colón, A. G., & Catchen, J. (2022). Population genomics analysis with RAD, reprised: Stacks 2. In: Verde, C., & Giordano, D. (Eds.), Marine Genomics, Humana, New York, NY, 99-149. https://doi.org/10.1007/978-1-0716-2313-8_7
Rochette, N. C., Rivera‐Colón, A. G., & Catchen, J. M. (2019). Stacks 2:Analytical methods for paired‐end sequencing improve RADseq‐based population genomics. Molecular Ecology, 28(21), 4737-4754. https://doi.org/10.1111/mec.15253
Rypien, K. L., Andras, J. P., & Harvell, C. D. (2008). Globally panmictic population structure in the opportunistic fungal pathogen Aspergillus sydowii. Molecular Ecology, 17(18), 4068-4078. https://doi.org/10.1111/j.1365-294X.2008.03894.x
Sánchez, M. I., Ponton, F., Missé, D., Hughes, D. P., & Thomas, F. (2008). Hairworm response to notonectid attacks. Animal Behaviour, 75(3), 823-826. https://doi.org/10.1016/j.anbehav.2007.07.002
Sarkies, P., Selkirk, M. E., Jones, J. T., Blok, V., Boothby, T., Goldstein, B., ...& Miska, E. A. (2015). Ancient and novel small RNA pathways compensate for the loss of piRNAs in multiple independent nematode lineages. PLoS Biology, 13(2), e1002061. https://doi.org/10.1371/journal.pbio.1002061
Sarmiento-Ramírez, J. M., Abella, E., Martín, M. P., Tellería, M. T., Lopez-Jurado, L. F., Marco, A., & Diéguez-Uribeondo, J. (2010). Fusarium solani is responsible for mass mortalities in nests of loggerhead sea turtle, Caretta caretta, in Boavista, Cape Verde. FEMS Microbiology Letters, 312(2), 192-200. https://doi.org/10.1111/j.1574-6968.2010.02116.x
Sato, T., Arizono, M., Sone, R., & Harada, Y. (2008). Parasite-mediated allochthonous input: Do hairworms enhance subsidized predation of stream salmonids on crickets?. Canadian Journal of Zoology, 86(3), 231-235. https://doi.org/10.1139/Z07-135
Sato, T., Watanabe, K., Kanaiwa, M., Niizuma, Y., Harada, Y., & Lafferty, K. D. (2011). Nematomorph parasites drive energy flow through a riparian ecosystem. Ecology, 92(1), 201-207. https://doi.org/10.1890/09-1565.1
Sato, T., Egusa, T., Fukushima, K., Oda, T., Ohte, N., Tokuchi, N., Watanabe, K., Kanaiwa, M., Murakami, I., & Lafferty, K.D. (2012). Nematomorph parasites indirectly alter the food web and ecosystem function of streams through behavioural manipulation of their cricket hosts. Ecology Letters, 15(8), 786-793. https://doi.org/10.1111/j.1461-0248.2012.01798.x
Sato, T., Watanabe, K., Fukushima, K., & Tokuchi, N. (2014). Parasites and forest chronosequence: Long-term recovery of nematomorph parasites after clear-cut logging. Forest Ecology and Management, 314, 166-171. https://doi.org/10.1016/j.foreco.2013.12.004
Scalici, M., & Gibertini, G. (2007). Feeding habits of the crayfish Austropotamobius pallipes (Decapoda, Astacidae) in a brook in Latium (central Italy). Italian Journal of Zoology, 74(2), 157-168. https://doi.org/10.1080/11250000701248688
Schmidt-Rhaesa, A. (2012). Nematomorpha. In Schmidt-Rhaesa, A. (Ed.), Handbook of Zoology. Gastrotricha, Cycloneuralia and Gnathifera, 1, De Gruyter, Berlin, 29-145. https://doi.org/10.1515/9783110272536
Schmidt‐Rhaesa, A., & Kristensen, P. (2006). Horsehair worms (Nematomorpha) from the Baltic Island Bornholm (Denmark), with notes on the biology of Gordius albopunctatus. Journal of Natural History, 40(9-10), 495-502. https://doi.org/10.1080/00222930600761803
Schmidt-Rhaesa, A., Biron, D. G., Joly, C., & Thomas, F. (2005). Host–parasite relations and seasonal occurrence of Paragordius tricuspidatus and Spinochordodes tellinii (Nematomorpha) in Southern France. Zoologischer Anzeiger-A Journal of Comparative Zoology, 244(1), 51-57. https://doi.org/10.1016/j.jcz.2005.04.002
Schoener, T. W. (1968). The Anolis lizards of Bimini: resource partitioning in a complex fauna. Ecology, 49(4), 704-726. https://doi.org/10.2307/1935534
Schwarz, G. (1978). Estimating the dimension of a model. Annals of Statistics,6, 461– 464. https://doi.org/10.1214/aos/1176344136
Selbach, C., Jorge, F., Dowle, E., Bennett, J., Chai, X., Doherty, J. F., ... & Poulin, R. (2019). Parasitological research in the molecular age. Parasitology, 146(11), 1361-1370. https://doi.org/10.1017/S0031182019000726
Shih, H. T., Hung, H. C., Schubart, C. D., Chen, C. A., & Chang, H. W. (2006). Intraspecific genetic diversity of the endemic freshwater crab Candidiopotamon rathbunae (Decapoda, Brachyura, Potamidae) reflects five million years of the geological history of Taiwan. Journal of Biogeography, 33(6), 980-989. https://doi.org/10.1111/j.1365-2699.2006.01472.x
Simões, M. V., & Peterson, A. T. (2018). Importance of biotic predictors in estimation of potential invasive areas: the example of the tortoise beetle Eurypedus nigrosignatus, in Hispaniola. PeerJ, 6, e6052. https://doi.org/10.7717/peerj.6052
Smith, C. S., Slade, S. J., Andrews, J. H., & Harris, R. F. (1989). Pathogenicity of the fungus, Colletotrichum gloeosporioides (Penz.) Sacc., to Eurasian watermilfoil (Myriophyllum spicatum L.). Aquatic Botany, 33(1-2), 1-12. https://doi.org/10.1016/0304-3770(89)90016-8
Smythe, A. B., Holovachov, O., & Kocot, K. M. (2019). Improved phylogenomic sampling of free-living nematodes enhances resolution of higher-level nematode phylogeny. BMC Evolutionary Biology, 19(1), 121. https://doi.org/10.1186/s12862-019-1444-x
Spearman, C. (1904). The proof and measurement of association between two things. The American Journal of Psychology, 15(1), 72–101. https://doi.org/10.2307/1412159
Strobel, H. M., Hays, S. J., Moody, K. N., Blum, M. J., & Heins, D. C. (2019). Estimating effective population size for a cestode parasite infecting three-spined sticklebacks. Parasitology, 146(7), 883-896. https://doi.org/10.1017/S0031182018002226
Sun, Y. C., Damm, U., & Huang, C. J. (2019). Colletotrichum plurivorum, the causal agent of anthracnose fruit rot of papaya in Taiwan. Plant Disease, 103(5), 1040. https://doi.org/10.1094/PDIS-08-18-1423-PDN
Tajima, F. (1989). Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics, 123(3), 585–595. https://doi.org/10.1093/genetics/123.3.585
Tedesco, P. A., Bigorne, R., Bogan, A. E., Giam, X., Jézéquel, C., & Hugueny,B. (2014). Estimating how many undescribed species have gone extinct. Conservation Biology, 28(5), 1360-1370. http://doi.org/10.1111/cobi.12285
Terui, A., Ooue, K., Urabe, H., & Nakamura, F. (2017). Parasite infection induces size-dependent host dispersal: consequences for parasite persistence. Proceedings of the Royal Society B: Biological Sciences, 284(1866), 20171491. https://doi.org/10.1098/rspb.2017.1491
Thomas, F., Schmidt‐Rhaesa, A., Martin, G., Manu, C., Durand, P., & Renaud, F. (2002). Do hairworms (Nematomorpha) manipulate the water seeking behaviour of their terrestrial hosts?. Journal of Evolutionary Biology, 15(3), 356-361. https://doi.org/10.1046/j.1420-9101.2002.00410.x
Thorn, C. S., Maness, R. W., Hulke, J. M., Delmore, K. E., & Criscione, C. D. (2023). Population genomics of helminth parasites. Journal of Helminthology, 97, e29. https://doi.org/10.1017/S0022149X23000123
Tobias, Z. J., Yadav, A. K., Schmidt-Rhaesa, A., & Poulin, R. (2017). Intra-and interspecific genetic diversity of New Zealand hairworms (Nematomorpha). Parasitology, 144(8), 1026-1040. https://doi.org/10.1017/S0031182017000233
Vaidya, G., Lohman, D. J., & Meier, R. (2011). SequenceMatrix: concatenation software for the fast assembly of multi‐gene datasets with character set and codon information. Cladistics, 27(2), 171-180. https://doi.org/10.1111/j.1096-0031.2010.00329.x
Valvassori, R., Scarì, G., De Eguileor, M., Di Lernia, L., Magneto, P., & Melone, G. (1988). Gordius villoti (Nematomorpha) life cycle in relation with caddis fly larvae. Italian Journal of Zoology, 55(1-4), 269-277. https://doi.org/10.1080/11250008809386624
van Proosdij, A. S., Sosef, M. S., Wieringa, J. J., & Raes, N. (2016). Minimum required number of specimen records to develop accurate species distribution models. Ecography, 39(6), 542-552. https://doi.org/10.1111/ecog.01509
van Schaik, J., Dekeukeleire, D., & Kerth, G. (2015). Host and parasite life history interplay to yield divergent population genetic structures in two ectoparasites living on the same bat species. Molecular Ecology, 24(10), 2324–2335. https://doi.org/10.1111/mec.13171
Vermeersch, X. H. C. (2020). Titanodula gen. nov., a new genus of giant Oriental praying mantises (Mantodea: Mantidae: Hierodulinae). Belgian Journal of Entomology, 100, 1-18. http://www.srbe-kbve.be/cm/sites/default/files/publications/BJE/BJE%202020/BJE%20_100_VERMEERSCH_July%202020.pdf
Vilgalys, R., & Hester, M. (1990). Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. Journal of Bacteriology, 172(8), 4238-4246. https://doi.org/10.1128/jb.172.8.4238-4246.1990
Vitalis, R., & Couvet, D. (2001). Estimation of effective population size and migration rate from one-and two-locus identity measures. Genetics, 157(2),
911-925. https://doi.org/10.1093/genetics/157.2.911
Waltari, E., & Perkins, S. L. (2010). In the hosts footsteps? Ecological niche modeling and its utility in predicting parasite distributions. In: Morand, S., & Krasnov, B. R. (Eds.), The Biogeography of Host–Parasite Interactions. Oxford University Press, Oxford, UK, 145-155. https://books.google.com.tw/books?hl=en&lr=&id=3gcWDAAAQBAJ&oi=fnd&pg=PA145&dq=info:d_XXehOjZygJ:scholar.google.com&ots=UStTOjq55x&sig=2rEykg9RVIRZ-WvexL13miwf1Kc&redir_esc=y#v=onepage&q&f=false129
Warren, D. (2018). Why add correlations for suitability scores? Species In Space. Available at https://enmtools.blogspot.com/2018/10/why-add-correlations-for-suitability.html. Accessed 14 July 2022.
Warren, D. L., & Seifert, S. N. (2011). Ecological niche modeling in Maxent: the importance of model complexity and the performance of model selection criteria. Ecological Applications, 21(2), 335-342. https://doi.org/10.1890/10-1171.1
Warren, D. L., Glor, R. E., & Turelli, M. (2008). Environmental niche equivalency versus conservatism: quantitative approaches to niche evolution. Evolution, 62(11), 2868-2883. https://doi.org/10.1111/j.1558-5646.2008.00482.x
Warren, D. L., Glor, R. E., & Turelli, M. (2010). ENMTools: a toolbox for comparative studies of environmental niche models. Ecography, 33(3), 607-611 (Version 1.4.4). https://doi.org/10.1111/j.1600-0587.2009.06142.x
Warren, D. L., Glor, R. E., & Turelli, M. (2011). ENMTools user manual v1. 3. 1-34. Available at: http://www.danwarren.net/enmtools/builds/ENMTools_1.4.4.zip
Warren, D. L., Matzke, N. J., Cardillo, M., Baumgartner, J. B., Beaumont, L. J., Turelli, M., ... & Dinnage, R. (2021). ENMTools 1.0: an R package for comparative ecological biogeography. Ecography, 44(4), 504-511. (ver. 1.0.5). https://doi.org/10.1111/ecog.05485
Weir, B. S., Johnston, P. R., & Damm, U. (2012). The Colletotrichum gloeosporioides species complex. Studies in Mycology, 73, 115-180. https://doi.org/10.3114/sim0011
Weller, A. M., Rödelsperger, C., Eberhardt, G., Molnar, R. I., & Sommer, R. J. (2014). Opposing forces of A/T-biased mutations and G/C-biased gene conversions shape the genome of the nematode Pristionchus pacificus. Genetics, 196(4), 1145-1152. https://doi.org/10.1534/genetics.113.159863
White, T. J., Bruns, T., Lee, S. J. W. T., & Taylor, J. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis, M. A., Gelfand, D. H., Sninsky, J. J. & White, T. J. (Eds.), PCR Protocols: A Guide to Methods and Applications, Academic Press, London, 315-322. https://doi.org/10.1016/B978-0-12-372180-8.50042-1
Winter, R. L., Lawhon, S. D., Halbert, N. D., Levine, G. J., Wilson, H. M., & Daly, M. K. (2010). Subcutaneous infection of a cat by Colletotrichum species. Journal of Feline Medicine & Surgery, 12(10), 828-830. https://doi.org/10.1016/j.jfms.2010.07.005
Worland, M. R., Wharton, D. A., & Byars, S. G. (2004). Intracellular freezing and survival in the freeze tolerant alpine cockroach Celatoblatta quinquemaculata. Journal of Insect Physiology, 50(2–3), 225–232. https://doi.org/10.1016/j.jinsphys.2003.12.001
Wu, C. J., Chen, H. K., & Ni, H. F. (2020). Identification and characterization of Colletotrichum species associated with mango anthracnose in Taiwan. European Journal of Plant Pathology, 157(1), 1-15. https://doi.org/10.1007/s10658-020-01964-4
Wynns, A. A., Jensen, A. B., Eilenberg, J., & Delalibera Júnior, I. (2019). Colletotrichum nymphaeae var. entomophilum var. nov. a natural enemy of the citrus scale insect, Praelongorthezia praelonga (Hemiptera: Ortheziidae). Scientia Agricola, 77(5), e20180269. http://doi.org/10.1590/1678-992X-2018-0269
Yang, T. F., Lee, T., Chen, C.-H., Cheng, S.-N., Knittel, U., Punongbayan, R.S., & Rasdas, A. R. (1996). A double island arc between Taiwan and Luzon: Consequence of ridge subduction. Tectonophysics, 258(1–4), 85–101. https://doi.org/10.1016/0040-1951(95)00180-8
Yi, X., & Latch, E. K. (2022). Nonrandom missing data can bias Principal Component Analysis inference of population genetic structure. Molecular Ecology Resources, 22(2), 602-611. https://doi.org/10.1111/1755-0998.13498
Zwiener, V. P., Padial, A. A., Marques, M. C., Faleiro, F. V., Loyola, R., & Peterson, A. T. (2017). Planning for conservation and restoration under climate and land use change in the Brazilian Atlantic Forest. Diversity and Distributions, 23(8), 955-966. https://doi.org/10.1111/ddi.12588