研究生: |
陳維浩 Chen, Wei-Hao |
---|---|
論文名稱: |
使用原子層沉積法成長氧硫化鋅緩衝層的無鎘/無毒銅鋅錫硫硒太陽能電池 Cadmium Free / Non-toxic CZTSSe Solar Cells Using Atomic Layer Deposited Zn(O,S) Buffer Layers |
指導教授: |
陳貴賢
Chen, Kuei-Hsien 陳政營 Chen, Cheng-Ying 林麗瓊 Chen, Li-Chyong |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2020 |
畢業學年度: | 108 |
語文別: | 英文 |
論文頁數: | 99 |
中文關鍵詞: | 銅鋅錫硫硒 、薄膜太陽能電池 、原子層沉積法 、無鎘緩衝層 、氧硫化鋅 、異質接面 、導帶位障差異 |
英文關鍵詞: | CZTSSe, Thin-film solar cells, Atomic layer deposition, Cadmium-free buffer layer, Zinc oxysulfide, Heterojunction, Conduction band offset |
DOI URL: | http://doi.org/10.6345/NTNU202000938 |
論文種類: | 學術論文 |
相關次數: | 點閱:200 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
1.https//www.eia.gov/outlooks/aeo/
2.Powalla, M. et al. Effects of heavy alkali elements in Cu(In,Ga)Se2 solar cells with efficiencies up to 22.6%. Phys Status Solidi Rapid Res Lett. 10(8), 583–586. (2016).
3.Gunawan, O. et al. Device characteristics of CZTSSe thin‐ film solar cells with 12.6% efficiency. Adv. Energy Mater. 4(7),1301465, (2014).
4.Kitagawab M. et al. Theoretical analysis of the effect of conduction band offset of window/CIS layers on performance of CIS solar cells using device simulation Sol. Energy Mater Sol. Cells. 67, 83, (2001).
5.https://about.bnef.com/blog/world-reaches-1000gw-wind-solrar-keeps-going/
6.https//mitei.mit.edu/futureofsolar
7.https//www.nrel.gov/pv/cell-efficiency.html
8.Pearson, G. L. et al. “A new silicon p-n junction photocell for converting solar radiation into electrical power”, J. Appl. Phys. 25, 676-677, (1954).
9.APS Physics about Bell labs demonstrates the first practical silicon solar cell. (accessed on 1954/04/25).
10.Im, S. H. et al. Recent progress of innovative perovskite hybrid solar cells, Isr. J. Chem. 1-13, (2015).
11.Green, M. A. Third generation photovoltaics: solar cells for 2020 and beyond. Physica E Low Dimens. Syst. Nanostruct. 65-70, 14(1), (2002).
12.Service, R. Solar Cells. Devices team up to boost solar power. Science (NewYork, NY). 225, 347(6219), 225, (2015).
13.Sunshine PV Corp about Advantage of CIGS solar cell. (access on 2017/06/10)
14.Sánchez Pérez, G. et al. Phase Diagram and Optical Energy Gaps for CuInyGa1−ySe2 Alloys. Physica Status Solidi. 124 (1991).
15.Fthenakis. V. et al. Sustainability of photovoltaics: The case for thin-film solar cells. Renew. Energ. 13, (2009).
16.http://en.wikipedia.org/
17.Nakazawa. T. et al. Electrical and Optical Properties of Stannite-Type Quaternary Semiconductor Thin Films. Jpn J Appl Phys. 27, (1988).
18.Delbos. S. et al. Kesterite thin films for photovoltaics: a review. EPJ Photovoltaics. 3, (2012).
19.Moon. J. et al. Band-gap-graded Cu2ZnSn(S1-x,Se(x))4 solar cells fabricated by an ethanol-based, particulate precursor ink route. Sci. Rep. 3, (2013).
20.Clemens. B. M. et al. Investigating the role of grain boundaries in CZTS and CZTSSe thin film solar cells with scanning probe microscopy. Adv. Mater. 24, (2012).
21.Yan. X. et al. Cu2ZnSnS4 Thin Film Solar Cells: Present Status and Future Prospects. Licensee Fin Tech. (2013).
22.Kammen. D. M. et al. Materials Availability Expands the Opportunity for Large-Scale Photovoltaics Deployment. Environ. Sci. Technol. 43, (2009).
23.Powalla, M. et al. Effects of heavy alkali elements in Cu(In,Ga)Se2 solar cells with efficiencies up to 22.6%. Phys Status Solidi Rapid Res Lett. 10(8), 583–586. (2016).
24.Gunawan, O. et al. Device characteristics of CZTSSe thin‐ film solar cells with 12.6% efficiency. Adv. Energy Mater. 4(7),1301465, (2014).
25.Edoff, M. et al. Strong Valence-Band Offset Bowing of ZnO1−xSx Enhances p-type Nitrogen Doping of ZnO-like Alloys. Physical Review Letters, 97(14), 146403 (2006)
26.Gong H. et al. Back Cover: CZTS‐based materials and interfaces and their effects on the performance of thin film solar cells. Physica Status Solidi–Rapid Res. Lett. 08 ,735, (2014).
27.http://www.solarfrontier.com/eng/news/2019/0117_press.html, 17 Jan 2019.
28.Mitzi, D. B. et al. Cd-free buffer layer materials on Cu2ZnSn(SxSe1−x)4: Band alignments with ZnO, ZnS, and In2S3. Appl. Phys. Lett. 100, 193904, (2012).
29.Platzer-Bjorkman, C. et al. Zn(O, S) Buffer Layers and Thickness Variations of CdS Buffer for Cu2ZnSnS4 Solar Cells. IEEE J. Photovoltaics, 4, 465-469, (2014).
30.Xiaojing Hao. et al. Enhanced heterojunction interface quality to achieve 9.3% efficient Cd-free Cu2ZnSnS4 solar cells using ALD ZnSnO buffer layer. ACS Chem. Mater. (2018).
31.Xiaojing Hao. et al. Cd-Free Cu2ZnSnS4 solar cell with an efficiency greater than 10% enabled by Al2O3 passivation layers. Energy Environ. Sci. (2019).
32.Yi Zhang. et al. Restraining the Band Fluctuation of CBD-Zn(O,S) Layer: Modifying the Hetero-Junction Interface for High Performance Cu2ZnSnSe4 Solar Cells With Cd-Free Buffer Layer. Solar RRL. (2017)
33.https://www.electrical4u.com/solar-cell/
34.http://wanda.fiu.edu/teaching/courses/Modern_lab_manual/pn_junction.html.
35.https://en.wikipedia.org/wiki/Direct_and_indirect_band_gaps
36.Ledinsky, M. et al. Organometallic Halide Perovskites: Sharp Optical Absorption Edge and Its Relation to Photovoltaic Performance, J. Phys. Chem. Lett. 5, 1035-9, (2014).
37.Queisser. Hans J. et al. "Detailed Balance Limit of Efficiency of p-n Junction Solar Cells" . J. Appl. Phys. 32, (3), 510–519, (1961).
38.http://met.usc.edu/projects/solarcells.php.
39.Balbir Singh Mahinder Singh. et al. Modeling of PV Panels Performance Based on Datasheet Values for Solar Micro Energy Harvesting. IEEE. (2016).
40.Hagendorfer, H. et al. Sodium assisted sintering of chalcogenides and its application to solution processed Cu2ZnSn(S,Se)4 thin film solar cells. Chem. Mater. 26(3), 1420-1425, (2014).
41.Wada, T. et al. First‐principles study on alkali‐metal effect of Li, Na, and K in Cu2ZnSnS4 and Cu2ZnSnSe4. Phys. Status Solidi. 12(6), 631-637, (2015).
42.Gokmen, T. et al. Impact of nanoscale elemental distribution in high‐performance kesterite solar cells. Adv. Energy Mater. 5(10), 1402180, (2015).
43.Chassaing, E. et al. Optimization of molybdenum thin films for electrodeposited CIGS solar cells. Sol. Energy Mater Sol. 95, S26-S31, (2011).
44.Johnson, M. et al. Calculation of the lattice dynamics and Raman spectra of copper zinc tin chalcogenides and comparison to experiments. J. Appl. Phys., 111(8), 083707, (2012).
45.Lee, E.S. et al. Single step preparation of quaternary Cu2ZnSnSe4 thin films by RF magnetron sputtering from binary chalcogenide Targets. J Phys Chem Solids, 68(10), 1908-1913, (2007).
46.Bhaskar, P. U. et al. Effect of post-deposition annealing on the growth of Cu2ZnSnSe4 thin films for a solar cell absorber layer. Semiconductor Science and Technology, 23(8), 085023, (2008).
47.Wan, Han, L. et al. Cu2ZnSnSe4 thin films prepared by selenization of co-electroplated Cu–Zn–Sn precursors. Applied Surface Science, 257(20), 8490-8492, (2011).
48.Gottscho, Richard A. et al. Highly Selective Directional Atomic Layer Etching of Silicon. Electrochem Soc Interface. 5010-5012 (2015).
49.Hiroki Sugimoto et. al., Cd-Free Cu(In,Ga)(Se,S)2 Thin-Film Solar Cell With Record Efficiency of 23.35%. IEEE J. Photovolt. 1863-1867, (2019).
50.Scragg, J.J. et al. Conversion of precursors into compound semiconductors, in Copper Zinc Tin Sulfide Thin Films for Photovoltaics. Springer Ser. Mater. Sci. 59-110, (2011).
51.Mitzi, D.B. et al. Defect engineering in military earth‐abundant chalcogenide photovoltaic materials. Advanced Energy Materials, 7(11), 1602366, (2017).
52.Van Mieghem, P. et al. Theory of band tails in heavily doped semiconductors. Reviews of modern physics, 64(3), 755, (1992).
53.Gong, X.G. et al. Classification of lattice defects in the kesterite Cu2ZnSnS4 and Cu2ZnSnSe4 earth‐abundant solar cell absorbers. Advanced Materials, 25(11), 1522-1539, (2013)
54.Wilks, Regan G. et al. CdS/Low-Band-Gap Kesterite Thin-Film Solar Cell Absorber Heterojunction: Energy Level Alignment and Dominant Recombination Process. Applied energy materials. 475-482, (2018).
55.Sharma, P. et al. CZTS/CdS: interface properties and band alignment study towards photovoltaic applications. J. Mater. Sci. 29(5), 4201-4210, (2018).
56.Murata, M. et al. Theoretical analysis on effect of band offsets in perovskite solar cells. Sol. Energy Mater Sol. Cells, 133, 8-14, (2015).
57.Herman, G. et al. Growth, Characterization and application of CdS thin films deposited by chemical bath deposition. Surf Interface Anal, 37(4), 398-405, (2005).
58.Chirilă, A. et al. Unveiling the effects of post-deposition treatment with different alkaline elements on the electronic properties of CIGS thin film solar cells. Phys. Chem. Chem. Phys. 16(19), 8843-8851, (2014).
59.http://www.edmundoptics.com/resources/application-notes/optics/anti-reflection coatings/
60.Feng, Y. et al. Limitation factors for the performance of kesterite Cu2ZnSnS4 thin film solar cells studied by defect characterization. RSC Adv. 5(50), 40369-40374, (2015).
61.Klaus, J. W. et al. Mechanism of atomic layer deposition of SiO2 on the silicon (100)-2×1 surface using SiCl4 and H2O as precursors. Journal of Applied Physics. 91, 3408 (2002).
62.Potts, S. E. et al. Plasma Assisted Atomic Layer Deposition: Basics, Opportunities, and Challenges Kessels. J. Vac. Sci. Technol. A. 29, 050801, (2011).
63.Fierro, J. L. G. Metal Oxides. Chemistry & Applications. 182. (2006).
64.Wells A.F. Structural Inorganic Chemistry 5th edition Oxford Science Publications. (1984)
65.Singh, Vidya, N. et al. Cd-Free Zn(O,S) as Alternative Buffer Layer for Chalcogenide and Kesterite Based Thin Films Solar Cells: A Review. J. Nanosci. Nanotechnol. 20,3622-3635, (2020).
66.Jackson, P. et al. New reaction kinetics for a high-rate chemical bath deposition of the Zn(S,O) buffer layer for Cu(In,Ga)Se2-based solar cells, Res. Appl. (2012).
67.Yi Zhang, et al. Restraining the Band Fluctuation of CBD-Zn(O,S)Layer: Modifying the Hetero-Junction Interface for High Performance Cu2ZnSnSe4 Solar Cells With Cd-Free Buffer Layer. RRL solar (2017).
68.https://www.sciencedirect.com/topics/materialsscience/magnetron-sputtering.
69.https://stuff.mit.edu/afs/athena.mit.edu/course/3/3.082/www/team2_f02/Pages/processing.html.
70.Lu, W. et al. Plant carotenoids: genomics meets multi-gene engineering. Surf Sci.303 111–117, (2014).
71.Bent, S.F. et al. Atomic layer deposition of ZnS via in situ production of H2S. Thin Solid Films. 518,5400–5408, (2010).
72.Skoog, Holler and Nieman. Principles of Instrumental Analysis. Fifth Editon 538-539.
73.https://en.wikipedia.org/wiki/Tauc_plot.
74.https://www.hitachihightech.com/global/products/science/tech/ana/lc/basic/course7.Html
75.http://klimat.czn.uj.edu.pl/media/archive/11592.jpg.
76.Gautam, R. Vibrational micro spectroscopic studies of biomedical conditions using model systems. Indian Institute of science Bangalore, 560012, India. (2014).
77.Li, Z, Scanning transmission electron microscopy studies of mono- and bimetallic nanoclusters. Frontiers of Nanoscience. 213-247, 2012.
78.S. Varma, J. Vac. et al. GaN, AlN, and InN: A review. J. Vac. Sci. Technol. A. 10, 2383, (1992).
79.Jiang, Q. et al. Synthesis and optical properties of flower-like ZnO nanorods by thermal evaporation method. Lian, Appl. Surf. Sci. 257, 5083, (2011).
80.Yakimova R. et al. Band-gap engineering of ZnO1-хSх films grown by rf magnetron sputtering of ZnS target, Vacuuum. 121, 120-124, (2015).
81.Zunger, A. et al. Band offsets and optical bowings of chalcopyrites and Zn‐based II‐VI alloys J. Appl. Phys. 78, 3846 (1995)
82.Xiaoet, X. et al. Forming an Ultrathin SnS Layer on Cu2ZnSnS4 Surface to Achieve Highly Efficient Solar Cells with Zn(O,S) Buffer. Sol. RRL. 2000010, (2020).
83.Sharma, P. et al. CZTS/CdS: interface properties and band alignment study towards photovoltaic applications. J. Mater. Sci. 29(5), 4201-4210, (2018).
84.Chen, C. et al. Solubility limits and phase structures in epitaxial ZnOS alloy films grown by pulsed laser deposition. J. Alloys Compd. 534, 81–85, (2012).
85.Edoff, M. et al. Experimental investigation of Cu(In1-x,Gax)Se2/Zn(O1-x,Sx) solar cell performance. Sol Energy. 497-503 (2011).