簡易檢索 / 詳目顯示

研究生: 李家睿
Lee, Chia-Jui
論文名稱: 利用有機膦試劑作為催化劑對 1,3-二茚酮衍生物進行 β-位醯化反應 以查耳酮香豆素衍生物與醯氯試劑製備呋喃[3,2-c]香豆素衍生物:利用三丁基膦試劑誘導之一系列碳-醯化反應/合環反應 使用催化量三乙胺與膦試劑於化學選擇性的還原/Wittig 反應以合成高官能性的呋喃分子
Direct β-Acylation of 2-Arylidene-1,3-indandiones with Acyl Chlorides Catalyzed by Organophosphanes Preparation of Furo[3,2-c]coumarins from 3-cinnamoyl-4-hydroxy-2H-chromen-2-ones and Acyl Chlorides: A Bu3P-Mediated C-Acylation/Cyclization Sequence Synthesis of Functionalized Furans via Chemoselective Reduction/Wittig reaction Using Catalytic Triethylamine and Phosphine
指導教授: 林文偉
Lin, Wen-Wei
學位類別: 博士
Doctor
系所名稱: 化學系
Department of Chemistry
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 587
中文關鍵詞: 有機膦試劑催化反應β-位醯化反應呋喃[3,2-c]香豆素
英文關鍵詞: organophosphane, catalytic reaction, β-acylation, furo[3,2-c]coumarin
DOI URL: https://doi.org/10.6345/NTNU202204360
論文種類: 學術論文
相關次數: 點閱:90下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 第一部分,利用催化量的有機膦試劑、醯氯以及三乙胺對其 β 位置進行直接地醯化反應。此合成策略也成功應用於 α,β- 不飽和內酯與內醯胺以及各系列五員環分子。此外醯化產物亦可簡單地透過與疊氮試劑的反應製備成噠嗪衍生物。
    第二部分,將查耳酮香豆素衍生物和醯氯試劑在三丁基膦的誘導下經由一系列有趣的中間體的形成而轉換成 phosphorus ylide,再透過配合的試劑進一步地製備各系列呋喃[3,2-c]香豆素衍生物。透過各種控制實驗的結果分析與探討成功地剖析此反應機制。
    第三部分,將 10 mol % 氧化膦試劑透過矽烷試劑的還原,應用於早期本實驗室開發的呋喃製成方法。透過一連串試劑的調整以及物理條件的優化,成功地屏除副反應路徑的發生,結合一系列高化學選擇性的還原反應、Michael 反應、氧醯化反應以及 intramolecular Wittig 反應於此方法學。

    In part I, we have developed an organophosphane-catalyzed direct β-acylation of a series of conjugated systems bearing ketone, amide and ester functionalities using acyl chlorides as trapping reagents. A wide variety of highly functional ketone derivatives were generated efficiently under very mild conditions with high yields according to our protocol. Our adducts can even be utilized as important building blocks for the synthesis of functional tri/tetracyclic pyridazine derivatives.

    In part II, electrophilic addition of acyl chlorides to 3- cinnamoyl-4-hydroxy -2H-chromen-2-ones and subsequent Bu3P-mediated cyclization leads to highly functionalized furo[3,2-c]coumarins. The unprecedented cyclization reaction proceeds under mild reaction conditions within short reaction times (1 min to 1 h), and can be further applied in the synthesis of alkenyl-substituted furo[3,2-c]coumarins by the treatment with carbonyl electrophiles under basic conditions.

    In part III, An efficient protocol for the synthesis of highly functionalized furans via intramolecular Wittig reaction has been developed using catalytic amounts of phosphine and triethylamine in the presence of silyl chloride, which served as the promoter to activate the phosphine oxide. Reduction of the activated phosphine oxide by hydrosilane resulted in the generation of phosphine, while the decomposition of conjugate acid of Et3N resulted in the regeneration of base, both of which mediated the formation of phosphorus ylide.

    利用有機膦試劑作為催化劑對 1,3-二茚酮衍生物進行 β-位醯化反應 I-1~I-61 以查耳酮香豆素衍生物與醯氯試劑製備呋喃[3,2-c]香豆素衍生物:利用三丁基膦試劑誘導之一系列碳-醯化反應/合環反應 II-1~II-68 使用催化量的三乙胺與膦試劑於化學選擇性的還原/Wittig 反應以合成高官能性的呋喃分子 III-1~III-51 附錄一 1H NMR & 13H NMR & 31P NMR spectra S-1~S-283 附錄二 X-ray 單晶繞射數據 S-284-S-393

    Part I

    [1] For selected examples, see: a) A. Michael, J. prakt. Chem. 1887, 35, 349; b) Y. Zhang, W. Wang, Catal. Sci. Technol. 2012, 2, 42.
    [2] selected examples: a) D. Basavaiah, A. J. Rao, T. Satyanarayana, Chem. Rev. 2003, 103, 811; b) Y. Wei, M. Shi, Chem. Rev. 2013; c) D. Basavaiah, B. S. Reddy, S. S. Badsara, Chem. Rev. 2010, 110, 5447.
    [3] For selected examples, see: a) G. Wittig; G. Geissler, Liebigs Ann. Chem. 1953, 580, 4; for selected reviews, see: b) B. E. Maryanoff, A. B. Reitz, Chem. Rev. 1989, 89, 863; c) P. A. Byrne, D. G. Gilheany, Chem. Soc. Rev. 2013, 42, 6670.
    [4] a) C. C. C. Johansson Seechurn, M. O. Kitching, T. J. Colacot, V. Snieckus, Angew. Chem. Int. Ed. 2012, 51, 5062; b) R. Jana, T. P. Pathak, M. S. Sigman, Chem. Rev. 2011, 111, 1417; c) Á. Molnár, Chem. Rev. 2011, 111, 2251; d) E. M. Beccalli, G. Broggini, M. Martinelli, S. Sottocornola, Chem. Rev. 2007, 107, 5318.
    [5] J. Smidt, W. Hafnér, R. Jira, J. Sedlmeier, R. Sieber, H. Kojer, R. Rüinger, Angew. Chem. 1959, 71, 176.
    [6] a) J. Smidt, W. Hafner, Angew. Chem. 1959, 71, 284; b) J. Tsuji, H. Takahashi, M. Morikawa, Tetrahedron Lett. 1965, 6, 4387; c) J. Tsuji, Pure Appl. Chem. 1999, 71, 1539.
    [7] a) T. Mizoroki, K. Mori, A. Ozaki, Bull. Chem. Soc. Jpn. 1973, 46, 1505; b) T. Mizoroki, K. Mori, A. Ozaki, Bull. Chem. Soc. Jpn. 1971, 44, 581; c) H. A. Dieck, R. F. Heck, J. Am. Chem. Soc. 1974, 96, 1133; d) R. F. Heck, J. P. Nolley, Jr., J. Org. Chem. 1972, 37, 2320; e) R. F. Heck, J. Am. Chem. Soc. 1968, 90, 5518.
    [8] a) E. Negishi, Acc. Chem. Res. 1982, 15, 340; b) E. Negishi, A. O. King, N. Okukado, J. Org. Chem. 1977, 42, 1821; c) A. O. King, N. Okukado, E. Negishi, J. Chem. Soc. Chem. Commun. 1977, 683.
    [9] D. Milstein, J. K. Stille, J. Am. Chem. Soc. 1978, 100, 3636.
    [10] a) N. Miyaura, A. Suzuki, J. Chem. Soc. Chem. Commun. 1979, 866; b) A. Suzuki, J. Organomet. Chem. 1999, 576, 147; c) N. Miyaura, A. Suzuki, Chem. Rev. 1995, 95, 2457.
    [11] For selected examples, see: a) T. Hayashi, M. Konishi, Y. Kobori, M. Kumada, T. Higuchi, K. Hirotsu, J. Am. Chem. Soc. 1984, 106, 158; b) S. D. Dreher, P. G. Dormer, D. L. Sandrock, G. A. Molander, J. Am. Chem. Soc. 2008, 130, 9257; c) C. A. Tolman, Chem. Rev. 1977, 77, 313; d) J. M. Brunel, MiniRev. Org. Chem. 2004, 1, 249.
    [12] For selected examples, see: a) W. J. Scott, G. T. Crisp, J. K. Stille, J. Am. Chem. Soc. 1984, 106, 4630; b) B. P. Fors, D. A. Watson, M. R. Biscoe, S. L. Buchwald, J. Am. Chem. Soc. 2008, 130, 13552; c) H. N. Nguyen, X. Huang, S. L. Buchwald, J. Am. Chem. Soc. 2003, 125, 11818.
    [13] For selected example, see: J. Yin, C. E. Gallis, J. D. Chisholm, J. Org. Chem. 2007, 72, 7054.
    [14] For selected examples, see: a) C. N. Cornell, M. S. Sigman, Org. Lett., 2006, 8, 4117; b) Z. K. Wickens, K. Skakuj, B. Morandi, R. H. Grubbs, J. Am. Chem. Soc. 2014, 136, 890.
    [15] For selected example, see: B. R. Travis, R. S. Narayan, B. Borhan, J. Am. Chem. Soc. 2002, 124, 3824.
    [16] X. Jia, S. Zhang, W. Wang, F. Luo, J. Cheng, Org. Lett. 2009, 11, 3120.
    [17] C.-W. Chan, Z. Zhou, W.-Y. Yu, Adv. Synth. Catal. 2011, 353, 2999.
    [18] a) J. W. Labadie, J. K. Stille, J. Am. Chem. Soc. 1983, 105, 6129; b) A. M. Echavarren, M. Perez, A. M. Castano, J. M. Cuerva, J. Org. Chem. 1994, 59, 4179
    [19] A. Capperucci, A. Degl'Innocenti, P. Dondoli, T. Nocentini, G. Reginato, A. Ricci, Tetrahedron 2001, 57, 6267.
    [20] C. Sämann, M. A. Schade, S. Yamada, P. Knochel, Angew. Chem. Int. Ed. 2013, 52, 1.
    [21] For the selected furans, see: a) T.-T. Kao, S.-E. Syu, Y.-W. Jhang, W. Lin, Org. Lett. 2010, 12, 3066; b) Y.-T. Lee, Y.-T. Lee, C.-J. Lee, C.-N. Sheu, B.-Y. Lin, J.-H. Wang, W. Lin, Org. Biomol. Chem. 2013, 11, 5156; for the benzofurans and indoles, see: c) S.-e. Syu, Y.-T. Lee, Y.-J. Jang, W. Lin, Org. Lett. 2011, 13, 2970; d) Y.-T. Lee, Y.-J. Jang, S.-e. Syu, S.-C. Chou, C.-J. Lee, W. Lin, Chem. Commun. 2012, 48, 8135; for the furocoumarins, see: e) C.-J. Lee, Y.-J. Jang, Z.-Z. Wu, W. Lin, Org. Lett. 2012, 14, 1906; for the furanonaphthoquinones, see: f) Z.-Z. Wu, Y.-J. Jang, C.-J. Lee, Y.-T. Lee, W. Lin, Org. Biomol. Chem. 2013, 11, 828; for the oxazoles, see: g) Y.-L. Tsai, Y.-S. Fan, C.-J. Lee, C.-H. Huang, U. Das, W. Lin, Chem. Commun. 2013, 49, 10266; for the selected review, see: f) U. Das, Y.-L. Tsai, W. Lin, Org. Biomol. Chem. 2014, 12, 4044.

    Part II

    [1] For the selected books, see: a) Quin, L. D.; Tyrell, J. Fundamentals of Heterocyclic Chemistry: Importance in Nature and in the Synthesis of Pharmaceuticals; John Wiley & Sons Inc.: New York, 2010; b) Comprehensive Heterocyclic Chemistry III; Katritzky, A. R., Ramsden, C. A., Scriven, E. F. V., Taylor, R. J. K., Eds.; Elsevier: Oxford, U.K., 2008.
    [2] For selected examples, see: a) C. Paal, Ber. Dtsch. Chem. Ges. 1884, 17, 2756; b) L. Knorr, Ber. Dtsch. Chem. Ges. 1884, 17, 2863; c) B. M. Trost, G. A. Doherty, J. Am. Chem. Soc. 2000, 122, 3801; d) H. Hart, Y. Takehira, J. Org. Chem. 1982, 47, 4370.
    [3] For selected examples, see: a) F. Feist, Ber. Dtsch. Chem. Ges. 1902, 35, 1537; b) E. Benary, Ber. Dtsch. Chem. Ges. 1911, 44, 489.
    [4] For selected reviews, see: a) A. V. Gulevich, A. S. Dudnik, N. Chernyak, V. Gevorgyan, Chem. Rev. 2013, 113, 3084; b) Z.-L. Song, C.-A. Fan, Y.-Q. Tu, Chem. Rev. 2011, 111, 7523.
    [5] a) R. C. Larock, N. Berrios-Pena, K. Narayanan, J. Org. Chem. 1990, 55, 3447; b) V. Ritleng, C. Sirlin, M. Pfeffer, Chem. Rev. 2002, 102, 1731.
    [6] J. A. Marshall, G. S. Bartley, J. Org. Chem. 1994, 59, 7169.
    [7] X = halides, see: a) A. W. Sromek, M. Rubina, V. Gevorgyan, J. Am. Chem. Soc. 2005, 127, 10500; X = silyl groups, see: b) A. S. Dudnik, Y. Xia, Y. Li, V. Gevorgyan, J. Am. Chem. Soc. 2010, 132, 7645.
    [8] Y. Xia, Y. Xia, R. Ge, Z. Liu, Q. Xiao, Y. Zhang, J. Wang, Angew. Chem. Int. Ed. 2014, 53, 3917.
    [9] For the example, see a) J. González, J. González, C. Pérez-Calleja, L. A López, R. Vicente, Angew. Chem. Int. Ed. 2013, 52, 5853; b) R. Vicente, J. González, L. Riesgo, J. González, L. A. López, Angew. Chem. Int. Ed. 2012, 51, 8063; for the book, see: c) L. F. de Miranda, M. Vale, A. H. Munhoz Júnior, T. Jocelen Masson, L. G. d. Andrade e Silva, in Characterization of Minerals, Metals, and Materials 2016, John Wiley & Sons, Inc., 2016, pp. 771.
    [10] C. Raji Reddy, M. Damoder Reddy, J. Org. Chem. 2014, 79, 106.
    [11] J. S. Clark, A. Boyer, A. Aimon, P. Engel García, D. M. Lindsay, A. D. F. Symington, Y. Danoy, Angew. Chem. Int. Ed. 2012, 51, 12128.
    [12] For the selected reviews, see: a) D. Basavaiah, A. J. Rao, T. Satyanarayana, Chem. Rev. 2003, 103, 811; b) Y. Wei, M. Shi, Chem. Rev. 2013; c) D. Basavaiah, B. S. Reddy, S. S. Badsara, Chem. Rev. 2010, 110, 5447.
    [13] For selected examples, see: a) S. A. Frank, D. J. Mergott, W. R. Roush, J. Am. Chem. Soc. 2002, 124, 2404; b) L.-C. Wang, A. L. Luis, K. Agapiou, H.-Y. Jang, M. J. Krische, J. Am. Chem. Soc. 2002, 124, 2402; c) C. E. Aroyan, S. J. Miller, J. Am. Chem. Soc. 2007, 129, 256.
    [14] For selected examples, see: a) G. Wittig; G. Geissler, Liebigs Ann. Chem. 1953, 580, 4; for selected reviews, see: b) B. E. Maryanoff, A. B. Reitz, Chem. Rev. 1989, 89, 863; c) P. A. Byrne, D. G. Gilheany, Chem. Soc. Rev. 2013, 42, 6670.
    [15] For selected examples, see: a) N. Iranpoor, H. Firouzabadi, D. Khalili, S. Motevalli, J. Org. Chem., 2008, 73, 4882; b) B. H. Lipshutz, D. W. Chung, B. Rich, R. Corral, Org. Lett., 2006, 8, 5069; c) O. Mitsunobu, M. Yamada, Bull. Chem. Soc. Jpn. 1967, 40, 2380.
    [16] For selected reviews, see: a) L.-W. Ye, J. Zhou, Y. Tang, Chem. Soc. Rev. 2008, 37, 1140; b) S. Xu, Z. He, RSC Advances 2013, 3, 16885; c) Y. C. Fan, O. Kwon, Chem. Commun. 2013, 49, 11588; d) S. Xu, Y. Tang, Lett. Org. Chem. 2014, 11, 524; e) Z. Wang, X. Xu, O. Kwon, Chem. Soc. Rev. 2014, 43, 2927.
    [17] For selected examples, see: a) Z. He, X. Tang and Z. He, Phosphorus, Sulfur Silicon Relat. Elem. 2008, 183, 1518; b) S. N. Khong, Y. S. Tran and O. Kwon, Tetrahedron 2010, 66, 4760; c) S. Xu, R. Chen and Z. He, J. Org. Chem. 2011, 76, 7528.
    [18] P. Xie, Y. Huang and R. Chen, Chem. Eur. J. 2012, 18, 7362.
    [19] For the review, see: a) U. Das, Y.-L. Tsai, W. Lin, Org. Biomol. Chem. 2014, 12, 4044; for the synthesis of furans, see: b) K.-W. Chen, S.-e. Syu, Y.-J. Jang, W. Lin, Org. Biomol. Chem. 2011, 9, 2098; c) T.-T. Kao, S.-e. Syu, Y.-W. Jhang, W. Lin, Org. Lett. 2010, 12, 3066; for the synthesis of furo[3,2-c]coumarins, see: d) C.-J. Lee, Y.-J. Jang, Z.-Z. Wu, W. Lin, Org. Lett. 2012, 14, 1906; for the synthesis of furo[3,4-c]coumarins, see: e) Y.-J. Jang, S.-e. Syu, Y.-J. Chen, M.-C. Yang, W. Lin, Org. Biomol. Chem. 2012, 10, 843; for the synthesis of benzofurans, benzothiophenes or indoles, see: f) S.-e. Syu, Y.-T. Lee, Y.-J. Jang, W. Lin, Org. Lett. 2011, 13, 2970; g) Y.-T. Lee, Y.-T. Lee, C.-J. Lee, C.-N. Sheu, B.-Y. Lin, J.-H. Wang, W. Lin, Org. Biomol. Chem. 2013, 11, 5156; for the synthesis of oxazoles, see: h) Y.-L. Tsai, Y.-S. Fan, C.-J. Lee, C.-H. Huang, U. Das, W. Lin, Chem. Commun. 2013, 49, 10266; for the synthesis of furanonaphthoquinones, see: i) Z.-Z. Wu, Y.-J. Jang, C.-J. Lee, Y.-T. Lee, W. Lin, Org. Biomol. Chem. 2013, 11, 828.

    Part III

    [1] For the selected examples, see: a) P. Cao, C.-Y. Li, Y.-B. Kang, Z. Xie, X.-L. Sun, Y. Tang, J. Org. Chem. 2007, 72, 6628; b) W.-D. Dai, A. Wu, H. Wu, Tetrahedron: Asymmetry 2002, 13, 2187; c) L. Shi, W. Wang, Y. Wang, Y. Huang, J. Org. Chem. 1989, 54, 2027.
    [2] Z.-Z. Huang, Y. Tang, J. Org. Chem. 2002, 67, 5320.
    [3] Y. Liao, Y.-Z. Huang, Tetrahedron Lett. 1990, 31, 5897.
    [4] For the selected examples, see: a) J. Henriksson, A. Johannisson, P.-A. Bergqvist, L. Norrgren, Arch. Environ. Contam. Toxicol. 1996, 30, 213; b) A. Taylor, Biol. Trace Elem. Res. 1996, 55, 231; c) K. A. Winship, Adverse Drug React. Acute Poisoning Rev. 1987, 6, 67; d) A. H. Welch, D. B. Westjohn, D. R. Helsel, R. B. Wanty, Ground Water 2000, 38, 589.
    [5] H. A. van Kalkeren, S. H. A. M. Leenders, C. R. A. Hommersom, F. P. J. T. Rutjes, F. L. van Delft, Chem. Eur. J. 2011, 17, 11290.
    [6] For the selected reviews, see: a) D. Herault, D. H. Nguyen, D. Nuel, G. Buono, Chem. Soc. Rev. 2015, 44, 2508; b) G. Keglevich, A.-C. Gaumont, J.-M. Denis, Heteroat. Chem. 2001, 12, 161.
    [7] For the selected examples, see: a) O. M. Demchuk, R. Jasiński, K. M. Pietrusiewicz, Heteroat. Chem 2015, 26, 441; b) E. H. Krenske, J. Org. Chem. 2012, 77, 3969.
    [8] H. Fritzsche, U. Hasserodt, F. Korte, G. Friese, K. Adrian, H. J. Arenz, Chem. Ber. 1964, 97, 1988.
    [9] H. Fritzsche, U. Hasserodt, F. Korte, G. Friese, K. Adrian, Chem. Ber. 1965, 98, 171.
    [10] L. Horner, W. D. Balzer, Tetrahedron Lett. 1965, 1157.
    [11] For the selected examples, see: a) J. Gatignol, C. Alayrac, J.-F. Lohier, J. Ballester, M. Taillefer, A.-C. Gaumont, Adv. Synth. Catal. 2013, 355, 2822; b) K. L. Marsi, J. Org. Chem. 1974, 39, 265; c) Y. Li, L.-Q. Lu, S. Das, S. Pisiewicz, K. Junge, M. Beller, J. Am. Chem. Soc., 2012, 134, 18325; d) M. Berthod, A. Favre-Réguillon, J. Mohamad, G. Mignani, G. Docherty, M. Lemaire, Synlett, 2007, 1545.
    [12] C. J. O'Brien, J. L. Tellez, Z. S. Nixon, L. J. Kang, A. L. Carter, S. R. Kunkel, K. C. Przeworski, G. A. Chass, Angew. Chem. Int. Ed. 2009, 48, 6836.
    [13] T. Imamoto, S. Kikuchi, T. Miura, Y. Wada, Org. Lett. 2000, 2, 87.
    [14] C. J. O'Brien, Z. S. Nixon, A. J. Holohan, S. R. Kunkel, J. L. Tellez, B. J. Doonan, E. E. Coyle, F. Lavigne, L. J. Kang, K. C. Przeworski, Chem. Eur. J. 2013, 19, 15281.
    [15] W. Zhao, P. K. Yan, A. T. Radosevich, J. Am. Chem. Soc. 2015, 137, 616.
    [16] D. Hirose, T. Taniguchi, H. Ishibashi, Angew. Chem. Int. Ed. 2013, 52, 4613.
    [17] J. A. Buonomo, C. C. Aldrich, Angew. Chem. 2015, 127, 13233.
    [18] H. A. van Kalkeren, J. J. Bruins, F. P. J. T. Rutjes, F. L. van Delft, Adv. Synth. Catal. 2012, 354, 1417.
    [19] K. Fourmy, A. Voituriez, Org. Lett. 2015, 17, 1537,
    [20] C. J. O'Brien, F. Lavigne, E. E. Coyle, A. J. Holohan, B. J. Doonan, Chem. Eur. J. 2013, 19, 5854.
    [21] For the review, see: a) U. Das, Y.-L. Tsai, W. Lin, Org. Biomol. Chem. 2014, 12, 4044; for the synthesis of furans, see: b) K.-W. Chen, S.-e. Syu, Y.-J. Jang, W. Lin, Org. Biomol. Chem. 2011, 9, 2098; c) T.-T. Kao, S.-e. Syu, Y.-W. Jhang, W. Lin, Org. Lett. 2010, 12, 3066; for the synthesis of furo[3,2-c]coumarins, see: d) C.-J. Lee, Y.-J. Jang, Z.-Z. Wu, W. Lin, Org. Lett. 2012, 14, 1906; for the synthesis of furo[3,4-c]coumarins, see: e) Y.-J. Jang, S.-e. Syu, Y.-J. Chen, M.-C. Yang, W. Lin, Org. Biomol. Chem. 2012, 10, 843; for the synthesis of benzofurans, benzothiophenes or indoles, see: f) S.-e. Syu, Y.-T. Lee, Y.-J. Jang, W. Lin, Org. Lett. 2011, 13, 2970; g) Y.-T. Lee, Y.-T. Lee, C.-J. Lee, C.-N. Sheu, B.-Y. Lin, J.-H. Wang, W. Lin, Org. Biomol. Chem. 2013, 11, 5156; for the synthesis of oxazoles, see: h) Y.-L. Tsai, Y.-S. Fan, C.-J. Lee, C.-H. Huang, U. Das, W. Lin, Chem. Commun. 2013, 49, 10266; for the synthesis of furanonaphthoquinones, see: i) Z.-Z. Wu, Y.-J. Jang, C.-J. Lee, Y.-T. Lee, W. Lin, Org. Biomol. Chem. 2013, 11, 828.
    [22] For the selected reviews, see: a) D. Basavaiah, A. J. Rao, T. Satyanarayana, Chem. Rev. 2003, 103, 811; b) Y. Wei, M. Shi, Chem. Rev. 2013; c) D. Basavaiah, B. S. Reddy, S. S. Badsara, Chem. Rev. 2010, 110, 5447.
    [23] For the selected examples, see: a) W. Q. Tian, Y. A. Wang, J. Org. Chem. 2004, 69, 4299; b) S. Ayesa, B. Samuelsson, B. Classon, Synlett, 2008, 89; c) F. L. Lin, H. M. Hoyt, H. v. Halbeek, R. G. Bergman, C. R. Bertozzi, J. Am. Chem. Soc, 2005, 127, 2686.
    [24] For selected examples, see: a) N. Iranpoor, H. Firouzabadi, D. Khalili, S. Motevalli, J. Org. Chem., 2008, 73, 4882; b) B. H. Lipshutz, D. W. Chung, B. Rich, R. Corral, Org. Lett., 2006, 8, 5069; c) O. Mitsunobu, M. Yamada, Bull. Chem. Soc. Jpn. 1967, 40, 2380.
    [25] D. Addis, S. Das, K. Junge, M. Beller, Angew. Chem. Int. Ed. 2011, 50, 6004.
    [26] a) H. Tanaka, T. Yano, K. Kobayashi, S. Kamenoue, M. Kuroboshi, H. Kawakubo, Synlett 2011, 582; b) H. Kawakubo, M. Kuroboshi, T. Yano, K. Kobayashi, S. Kamenoue, T. Akagi, H. Tanaka, Synthesis 2011, 4091.
    [27] Phosphine oxide served as a co-catalyst to promot the reducing abilitly of hydrosilane, for selected examples, see: a) T. Y. S. But, P. H. Toy, Chem. Asian J. 2007, 2, 1340; b) L. Chen, Y. Du, X.-P. Zeng, T.-D. Shi, F. Zhou, J. Zhou, Org. Lett. 2015, 17, 1557.

    下載圖示
    QR CODE