簡易檢索 / 詳目顯示

研究生: 張博嘉
Chang, Po-Chia
論文名稱: 天然礦石二硫化鐵作為室溫鈉硫電池正極之電化學反應機制研究
The electrochemical reaction mechanism of pyrite FeS2 as Cathode for Room Temperature Sodium-Sulfur Battery
指導教授: 陳家俊
Chen, Chia-Chun
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 106
中文關鍵詞: 二硫化鐵室溫鈉硫電池正極材料
英文關鍵詞: Iron disulfide(nature pyrite), Room temperature sodium-sulfur batteries, Cathode
論文種類: 學術論文
相關次數: 點閱:227下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

為了尋找比傳統廣泛使用的鋰離子電池具有高能量密度及較低的成本,常溫鈉硫電池是具有淺力的候選之一,此種新型電池不但大大的降低成本,也解決了高溫鈉硫電池在工作時安全性的問題,但以硫為正極材料的常溫鈉硫電池仍存在一些困難,像是導電性不足使材料反應性不佳,以及硫在鈉離子嵌入後所形成可溶性多硫化鈉溶解於電解液…等,這些因素會導致電池的電容量衰退以及較低的庫倫效率,所以本篇論文,以尋找合適的電極材料來改善目前的鈉硫電池之問題。
本研究是將天然礦石二硫化鐵材料應用在室溫鈉硫電池之正極。我們發現二硫化鐵材料在電流密度約50mAg-1條件下其第一圈放電電容量為1360 mAhg-1,而充電電容量約為1086 mAhg-1,其不可逆電容量約為20%,循環50圈後電容量約還有745 mAhg-1。而在快速充放電的測試中,我們以電流密度約8920 mAg-1的大電流下進行充放電測試,其電容量仍表現相當高的520 mAhg-1。最後,我們發現單純以微米大小之二硫化鐵應用在鈉硫電池的正極上,搭配適當的電解液和選擇合適的電位範圍,可得到穩定的循環表現、良好的庫倫效率以及快速充放電下可保持一定之電容量。

Efficient electrical energy storage has attracted intense attention due to power demend in next generation of electric vehicles and stationary applications. Rechargeable battery has viewed as good approach for energy storage. To aspire the higher energy density than traditional lithium ion battery used wildly, room temperature sodium-sulfur batteries (RT Na-S batteries) are especially attractive because of their high specific energy. In this thesis, a iron pyrite FeS2 material was investigated as sulfur source in the cathode electrode of RT Na-S battery. We found that iron disulfide as cathode materials (FeS2/Na-S battery) exhibited first discharge and charge capacity of 1360 mAhg-1 and 1086 mAhg-1 at a current density of 50 mAg-1 with a suitable electrolyte and potential range. The irreversible capacity at first cycle is approximately 20%. The capacity of FeS2 still remained 745 mAh g-1 after 50th cycles. During rapid charge - discharge test, FeS2/Na-S battery showed a high capacity of 520 mAh g-1 at a current density of 8920 mAg-1. In the detailed characterization by Raman and X-ray absorption spectra, we found that No polysulfide was formed by sulfur in FeS2 reacting with sodium and dissolved in electrolyte, resulting in remaining good capacity retention. Overall results indicated that The FeS2 cathode materials used in RT Na-S battery exhibited long cycle performance, high Coulombic efficiency and good capacity retention at high charge-discharge rate.

謝誌 1 總目錄 2 圖表目錄 4 摘要 11 Abstract 12 第一章 緒論 13 1-1 前言 13 1-2 鈉離子電池發展 13 第二章 原理與文獻回顧 16 2-1 鈉離子電池工作原理與組成 16 2-2鈉離子電池的陰極材料 17 2-2-1層狀結構 17 2-2-2橄欖石結構 19 2-2-3 NASICON結構 20 2-2-4氟磷酸鈉金屬化合物 22 2-3 鈉離子電池的陽極材料 25 2-3-1 碳材的負極材料 25 2-3-2 金屬或合金的負極材料 27 2-3-3 金屬氧化物的負極材料 29 2-3-4 其他的負極材料 30 2-4 電解液 31 2-4-1 有機溶劑電解液 32 2-4-2 凝膠聚合物電解液 35 2-5 鋰硫電池與鈉硫電池的研究現況 36 2-5-1 鋰硫電池 37 2-5-2 高溫鈉硫電池 43 2-5-3 室溫鈉硫電池 45 2-6 二硫化鐵應用在鋰離子電池及鈉離子電池 52 2-6-1 二硫化鐵在鋰離子電池上的應用 52 2-6-2 二硫化鐵在鈉離子電池上的應用 55 第三章 研究動機與實驗 62 3.1 研究動機 62 3-2 實驗藥品 62 3-3 儀器設備 64 3-4 FeS2奈米晶體合成實驗步驟 65 3-4-1 FeS2 nanoparticle合成步驟 65 3-4-2 FeS2 cubic合成步驟 66 3-5 材料鑑定與分析 67 3-5-1 X-光粉末繞射分析儀 (X-ray Diffraction, XRD) 67 3-5-2 掃瞄式電子顯微鏡(Scanning Electron Microscopy, SEM) 68 3-5-3穿透式電子顯微鏡 (Transmission Electron Microscopy, TEM) 69 3-6 陰極(正極)電極製備 70 3-7 鈕扣型電池組裝 73 3-8 鈕扣型電池電化學測試 74 3-8-1鈕扣型電池充放電測試 74 3-8-2 循環伏安法測試 75 3-8-3交流阻抗(AC Impedance)分析 75 第四章 實驗結果與討論 77 4-1 二硫化鐵材料的鑑定 77 4-2 不同電位範圍的探討 78 4-3 不同電解液的比較 81 4-4 電化學的測量及分析 85 4-5 不同結構大小之二硫化鐵的影響 92 4-6 吸收光譜鑑定 97 第五章 結論 102 參考文獻 103

(1) Pan, H.; Hu, Y.-S.; Chen, L. Energy Environ. Sci. 2013, 6, 2338.
(2) Bhide, A.; Hariharan, K. Solid State Ionics 2011, 192, 360.
(3) Berthelot, R.; Carlier, D.; Delmas, C. Nat Mater 2011, 10, 74.
(4) Hu, F.; Doeff, M. M. J. Power Sources 2004, 129, 296.
(5) Ma, X.; Chen, H.; Ceder, G. J. Electrochem. Soc. 2011, 158, A1307.
(6) Xia, X.; Dahn, J. R. Electrochem. Solid-State Lett. 2011, 15, A1.
(7) Komaba, S.; Takei, C.; Nakayama, T.; Ogata, A.; Yabuuchi, N. Electrochem. Commun. 2010, 12, 355.
(8) Palomares, V.; Serras, P.; Villaluenga, I.; Hueso, K. B.; Carretero-Gonzalez, J.; Rojo, T. Energy Environ. Sci. 2012, 5, 5884.
(9) Zaghib, K.; Trottier, J.; Hovington, P.; Brochu, F.; Guerfi, A.; Mauger, A.; Julien, C. M. J. Power Sources 2011, 196, 9612.
(10) Plashnitsa, L. S.; Kobayashi, E.; Noguchi, Y.; Okada, S.; Yamaki, J.-i. J. Electrochem. Soc. 2010, 157, A536.
(11) Barker, J.; Saidi, M. Y.; Swoyer, J. L. Electrochem. Solid-State Lett. 2003, 6, A1.
(12) Barker, J.; Saidi, M. Y.; Swoyer, J. L. J. Electrochem. Soc. 2004, 151, A1670.
(13) Zhao, J.; He, J.; Ding, X.; Zhou, J.; Ma, Y. o.; Wu, S.; Huang, R. J. Power Sources 2010, 195, 6854.
(14) Tsurkan, V.; Deisenhofer, J.; Günther, A.; Krug von Nidda, H. A.; Widmann, S.; Loidl, A. Physical Review B 2011, 84, 144520.
(15) Sauvage, F.; Quarez, E.; Tarascon, J. M.; Baudrin, E. Solid State Sci. 2006, 8, 1215.
(16) Recham, N.; Chotard, J.-N.; Dupont, L.; Djellab, K.; Armand, M.; Tarascon, J.-M. J. Electrochem. Soc. 2009, 156, A993.
(17) Ge, P.; Fouletier, M. Solid State Ionics 1988, 28–30, Part 2, 1172.
(18) Doeff, M. M.; Ma, Y.; Visco, S. J.; De Jonghe, L. C. J. Electrochem. Soc. 1993, 140, L169.
(19) Alcántara, R.; Fernández Madrigal, F. J.; Lavela, P.; Tirado, J. L.; Jiménez Mateos, J. M.; Gómez de Salazar, C.; Stoyanova, R.; Zhecheva, E. Carbon 2000, 38, 1031.
(20) Alcántara, R.; Jiménez-Mateos, J. M.; Lavela, P.; Tirado, J. L. Electrochem. Commun. 2001, 3, 639.
(21) Stevens, D. A.; Dahn, J. R. J. Electrochem. Soc. 2000, 147, 1271.
(22) Alcántara, R.; Lavela, P.; Ortiz, G. F.; Tirado, J. L. Electrochem. Solid-State Lett. 2005, 8, A222.
(23) Wenzel, S.; Hara, T.; Janek, J.; Adelhelm, P. Energy Environ. Sci. 2011, 4, 3342.
(24) Matsuura, Y.; Ishikawa, T.; Murata, W.; Yabuuchi, N.; Kuze, S.; Komaba, S. Meeting Abstracts 2012, MA2012-02, 1849.
(25) Hong, K.-S.; Nam, D.-H.; Lim, S.-J.; Kwon, H. Meeting Abstracts 2013, MA2013-02, 479.
(26) Datta, M. K.; Epur, R.; Saha, P.; Kadakia, K.; Park, S. K.; Kumta, P. N. J. Power Sources 2013, 225, 316.
(27) Qian, J.; Chen, Y.; Wu, L.; Cao, Y.; Ai, X.; Yang, H. Chem. Commun. 2012, 48, 7070.
(28) Xiao, L.; Cao, Y.; Xiao, J.; Wang, W.; Kovarik, L.; Nie, Z.; Liu, J. Chem. Commun. 2012, 48, 3321.
(29) Xiong, H.; Slater, M. D.; Balasubramanian, M.; Johnson, C. S.; Rajh, T. The Journal of Physical Chemistry Letters 2011, 2, 2560.
(30) Su, D.; Wang, C.; Ahn, H.; Wang, G. PCCP 2013, 15, 12543.
(31) Wang, Y.; Su, D.; Wang, C.; Wang, G. Electrochem. Commun. 2013, 29, 8.
(32) Qian, J.; Qiao, D.; Ai, X.; Cao, Y.; Yang, H. Chem. Commun. 2012, 48, 8931.
(33) Song, J.; Yu, Z.; Gordin, M. L.; Hu, S.; Yi, R.; Tang, D.; Walter, T.; Regula, M.; Choi, D.; Li, X.; Manivannan, A.; Wang, D. Nano Lett. 2014, 14, 6329.
(34) Senguttuvan, P.; Rousse, G.; Seznec, V.; Tarascon, J.-M.; Palacín, M. R. Chem. Mater. 2011, 23, 4109.
(35) Komaba, S.; Murata, W.; Ishikawa, T.; Yabuuchi, N.; Ozeki, T.; Nakayama, T.; Ogata, A.; Gotoh, K.; Fujiwara, K. Adv. Funct. Mater. 2011, 21, 3859.
(36) Ponrouch, A.; Marchante, E.; Courty, M.; Tarascon, J.-M.; Palacin, M. R. Energy Environ. Sci. 2012, 5, 8572.
(37) Patel, M.; Chandrappa, K. G.; Bhattacharyya, A. J. Solid State Ionics 2010, 181, 844.
(38) Bhide, A.; Hariharan, K. Polym. Int. 2008, 57, 523.
(39) Kumar, D.; Hashmi, S. A. Solid State Ionics 2010, 181, 416.
(40) Ji, X.; Lee, K. T.; Nazar, L. F. Nat Mater 2009, 8, 500.
(41) Wang, H.; Yang, Y.; Liang, Y.; Robinson, J. T.; Li, Y.; Jackson, A.; Cui, Y.; Dai, H. Nano Lett. 2011, 11, 2644.
(42) Zheng, G.; Zhang, Q.; Cha, J. J.; Yang, Y.; Li, W.; Seh, Z. W.; Cui, Y. Nano Lett. 2013, 13, 1265.
(43) Li, W.; Zhang, Q.; Zheng, G.; Seh, Z. W.; Yao, H.; Cui, Y. Nano Lett. 2013, 13, 5534.
(44) Zhang, B.; Qin, X.; Li, G. R.; Gao, X. P. Energy Environ. Sci. 2010, 3, 1531.
(45) Li, G.-C.; Li, G.-R.; Ye, S.-H.; Gao, X.-P. Adv. Energy Mater. 2012, 2, 1238.
(46) Shin, E. S.; Kim, K.; Oh, S. H.; Cho, W. I. Chem. Commun. 2013, 49, 2004.
(47) Chang, D.-R.; Lee, S.-H.; Kim, S.-W.; Kim, H.-T. J. Power Sources 2002, 112, 452.
(48) Liang, X.; Wen, Z.; Liu, Y.; Wu, M.; Jin, J.; Zhang, H.; Wu, X. J. Power Sources 2011, 196, 9839.
(49) Choi, J.-W.; Cheruvally, G.; Kim, D.-S.; Ahn, J.-H.; Kim, K.-W.; Ahn, H.-J. J. Power Sources 2008, 183, 441.
(50) Wu, M.; Wen, Z.; Liu, Y.; Wang, X.; Huang, L. J. Power Sources 2011, 196, 8091.
(51) Hueso, K. B.; Armand, M.; Rojo, T. Energy Environ. Sci. 2013, 6, 734.
(52) Park, C.-W.; Ahn, J.-H.; Ryu, H.-S.; Kim, K.-W.; Ahn, H.-J. Electrochem. Solid-State Lett. 2006, 9, A123.
(53) Yu, X.; Manthiram, A. ChemElectroChem 2014, 1, 1275.
(54) Manthiram, A.; Yu, X. Small 2015, 11, 2108.
(55) Lee, D.-J.; Park, J.-W.; Hasa, I.; Sun, Y.-K.; Scrosati, B.; Hassoun, J. J. Mater. Chem. A 2013, 1, 5256.
(56) Hwang, T. H.; Jung, D. S.; Kim, J.-S.; Kim, B. G.; Choi, J. W. Nano Lett. 2013, 13, 4532.
(57) Xin, S.; Yin, Y.-X.; Guo, Y.-G.; Wan, L.-J. Adv. Mater. 2014, 26, 1308.
(58) Yu, X.; Manthiram, A. J. Phys. Chem. C 2014, 118, 22952.
(59) Zhang, D.; Tu, J. P.; Xiang, J. Y.; Qiao, Y. Q.; Xia, X. H.; Wang, X. L.; Gu, C. D. Electrochim. Acta 2011, 56, 9980.
(60) Liu, J.; Wen, Y.; Wang, Y.; van Aken, P. A.; Maier, J.; Yu, Y. Adv. Mater. 2014, 26, 6025.
(61) Kim, T. B.; Choi, J. W.; Ryu, H. S.; Cho, G. B.; Kim, K. W.; Ahn, J. H.; Cho, K. K.; Ahn, H. J. J. Power Sources 2007, 174, 1275.
(62) Kitajou, A.; Yamaguchi, J.; Hara, S.; Okada, S. J. Power Sources 2014, 247, 391.
(63) Hu, Z.; Zhu, Z.; Cheng, F.; Zhang, K.; Wang, J.; Chen, C.; Chen, J. Energy Environ. Sci. 2015, 8, 1309.
(64) Gao, J.; Lowe, M. A.; Kiya, Y.; Abruña, H. D. J. Phys. Chem. C 2011, 115, 25132.

無法下載圖示 本全文未授權公開
QR CODE