簡易檢索 / 詳目顯示

研究生: 黃信銘
Sin-Ming Huang
論文名稱: 以癌細胞株與動物模式探討吲哚結構化合物對於腫瘤細胞的生長抑制及其機轉
Effects and mechanisms of indole compounds on cancer cell growth inhibition in cell and animal models
指導教授: 王憶卿
Wang, Yi-Ching
呂國棟
Lu, Kwok-Tung
學位類別: 博士
Doctor
系所名稱: 生命科學系
Department of Life Science
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 87
中文關鍵詞: 吲哚DNA損傷活性氧化物細胞凋亡
英文關鍵詞: indole, DNA damage, reactive oxygen species, apoptosis
論文種類: 學術論文
相關次數: 點閱:162下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 背景:前人研究指出,多種吲哚類化合物具有抑制細胞分裂的效果,進而導致癌細胞的細胞週期停滯和細胞凋亡。我們實驗室先前的研究證明,3-indole這個新穎的吲哚結構化合物可在30M的濃度下,藉由粒線體途徑(mitochondrial pathway)引起肺癌細胞凋亡,並在動物模式中抑制腫瘤生長。目的:本篇研究探討低濃度3-indole(10M)對癌細胞造成的生長抑制及其分子機轉。另外,我們也發展了另一個新穎的吲哚類化合物—SK228。我們利用細胞及動物模式,探討其對癌細胞生長的影響及其分子機轉。結果:在以10M 3-indole處理A549、CL1-1及H1437肺癌細胞株之後,發現癌細胞生長被抑制,並且造成細胞週期停滯於G1期。3-indole引起的DNA損傷由Comet assay所驗證,並且數種DNA損傷反應蛋白質及G1期調控蛋白質(例如RB、p53、p21和 SMAD3)在3-indole處理後表現量增加。我們進一步發現,3-indole也會引起DNA損傷反應路徑—ATM/ATR路徑的活化;另外,活性氧自由基(reactive oxygen species, ROS)的抑制劑rotenone能降低3-indole引起的DNA損傷和ATM/ATR反應路徑的活化。這些結果指出,ROS在3-indole引起的癌細胞生長抑制中,扮演重要的角色;動物異種移植(xenograft)實驗進一步證明,3-indole在細胞模式中活化的反應路徑,亦可見於動物模式中。在SK228的研究中,我們發現該化合物可有效的抑制肺癌及食道癌細胞生長,而對於正常肺纖維母細胞則無明顯影響。在以SK228處理過的細胞中,觀察到代表細胞凋亡的「細胞膜內膜外翻」的現象,指出SK228會引起細胞凋亡。我們進一步驗證了,SK228藉由與DNA的結合、鑲嵌及產生ROS而造成DNA的結構改變及損傷。SK228的處理會促進cytochrome c從粒線體釋放至細胞質中,以及caspase-3 和 caspase-9的活化,但不影響caspase-8的活性,並且這些反應可被ROS的抑制劑rotenone所抑制。另外,BCL-2家族的蛋白質表現量及粒線體外膜的完整性,亦受到SK228的影響。我們更進一步發現,SK228藉由降低FAK/paxillin路徑及RhoA的活性而抑制癌細胞的轉移能力。另外,動物實驗也證明SK228可有效抑制腫瘤細胞的生長,並且沒有引起明顯的體重變化或血液學、生化學上的明顯傷害。而且,藉由TUNEL assay和免疫組織化學染色證明,SK228可在動物模式中誘發癌細胞的細胞凋亡,進而抑制腫瘤生長。結論:本實驗證明,低濃度3-indole會藉由產生ROS而造成DNA損傷,並引起ATM/ATR路徑和TGF-β/SMAD路徑的活化,進而使細胞產生細胞週期G1期停滯現象。另外,SK228會藉由造成DNA損傷及ROS的產生而誘使癌細胞經由粒線體路徑進行細胞凋亡,並且也證明SK228可以在低濃度下有效抑制癌細胞的轉移能力。

    Background: In our previous study, we demonstrated that 30μM of 3-indole, a new generated indole compound, induces lung cancer cells apoptosis through intrinsic mitochondrial pathway and inhibits tumor growth in xenograft models. Purpose: This study aims to verify the effects and mechanism of low concentration (10μM) of 3-indole treatment on cancer cell growth. In addition, we developed a novel indole compound 3,3',3'',3'''- (1,4-phenylenebis(methanetriyl))tetrakis (1H-indol-5-ol), named SK228. Its effects and mechanism on anticancer growth and migration were examined in cell and animal models. Results: Cell growth inhibition and cell cycle G1 arrest were observed in A549, CL1-1, and H1437 lung cancer cell lines treated with 10μM 3-indole. Several DNA damage responsive proteins and G1 regulation proteins such as RB, p53, p21, and SMAD3 were also induced. DNA damage was confirmed by Comet assay. We further found that DNA damage response ATM/ATR pathway proteins, such as ATM, CHK1, and CHK2 can be induced in 3-indole treated A549 cells. Interestingly, reactive oxygen species (ROS) inhibitor rotenone reduced the DNA damage effect, abated the level of ATM/ATR pathway proteins, and decreased the level of G1 cell cycle arresting proteins induced by 3-indole. The altered expression of ATM/ATR pathway proteins were confirmed in xenograft models. These results indicated the crucial role of ROS in cancer call growth inhibition by 3-indole. In the study of SK228, we found its significant cell growth inhibition efficiency on lung cancer and esophageal cancer cell lines, without affecting the growth of normal lung cell line IMR90. After treating with SK228, induction of phosphatidylserine staining with an increase of sub-G1 phase were observed, indicating that SK228 induced cell apoptosis. SK228 induced DNA damage by Comet assay, and SK228-induced damage resulted from DNA minor groove binding, DNA intercalating, and ROS production. SK228 treatment increased the release of cytochrome c into cytosol along with the increased activity of caspase-3 and -9 without affecting caspase-8, whereas these effects were attenuated by ROS inhibitor. In addition, the expression levels of BCL-2 family regulators of mitochondrial outer membrane permeablization were also affected. These results indicated that SK228 induced apoptosis mainly through intrinsic/mitochondrial pathway. Moreover, low-dose SK228 significantly reduced the invasion of cancer cells. The FAK/paxillin signaling pathway proteins and active form of RhoA were decreased. The F-actin cytoskeleton was also disrupted. Animal study showed that SK228 remarkably reduced tumor size in nude mice bearing human A549 lung carcinoma tumor xenograft without significant side effects. In addition, TUNEL assay and immunohistochemistry of cleaved caspase 3 in tumors from SK228-treated animals confirmed that SK228 inhibited cancer cell growth by initiating apoptosis. Conclusions: This study showed that low concentration 3-indole causes DNA damage by ROS and triggers ATM/ATR-CHK1/CHK2 and TGF-β/SMAD signaling pathway to arrest lung cancer cells in G1 phase. In addition, we demonstrate SK228 caused DNA damage and ROS production leading to cancer cells apoptosis through mitochondria-mediated pathway in cell lines and animal models and inhibited cancer cell invasion via FAK/paxillin disruption at non-cytotoxic doses.

    Abstract in Chinese……………………………………………………. 1 Abstract in English……………………………………………………. 3 Study Rationale…………………………………………………….…. 5 Introduction I. Lung cancer and treatment……………………………………….. 6 II. Esophageal cancer and treatment………………………………… 7 III. The effects of indole compounds on cancer cells i. Current chemotherapeutic agents containing indole structure….. 9 ii. Developing drugs containing indole structure ………………….. 9 iii. Our previous study on 3-indole ………………………………… 10 IV. Cell cycle controlling………………………………………………. 10 V. Overview of apoptosis........................................................................ 12 i. Apoptosis....................................................................................... 12 ii. Caspases (cysteine-dependent aspartate-specific proteases)......... 13 iii. BCL-2 family (B-cell lymphoma 2).............................................. 14 iv. Pathways of apoptosis.................................................................... 15 v. Apoptosis and cancer..................................................................... 17 VI. DNA damage response........................................................................ 17 i. Reactive oxygen species (ROS)................................................... 17 ii. The importance of ATM/ATR-CHK1/CHK2 proteins in DNA damage response………………………………............................ 19 iii. Transforming growth factor (TGF)-β1 and SMAD family……... 19 VII. Overview of metastasis................................................................. 20 i. Metastasis and cancer..................................................................... 20 ii. Integrins: a superfamily of cell surface receptors.......................... 21 iii. Rho family of small GTPases........................................................ 22 Specific Aims I. 3-indole (First generation compound)............................................... 23 II. SK228 (Second generation compound)............................................ 23 Materials and Methods I. 1,1,3-tri(3-indolyl)cyclohexane (3-indole)......................................... 25 II. 3,3',3'',3'''-(1,4-phenylenebis(methanetriyl))tetrakis(1H-indol-5-ol) (tetra-indole-5-ol or SK228)................................................................ 25 III. Cell culture......................................................................................... 25 IV. Compound cytotoxicity assay/MTT assay.......................................... 26 V. Early apoptosis detection/phosphatidylserine (PS) staining............... 27 VI. Analysis of cell cycle distribution....................................................... 27 VII. Determination of single cell DNA damage/NE-comet assay.............. 28 VIII. DNA minor groove binding effect/Hoechst dye 33342 displacement assay............................................................................. 30 IX. DNA intercalating measurement/plasmid DNA circle-linear assay................................................................................................... 30 X. Determination of intracellular reactive oxygen species..................... 31 XI. Western blot analysis......................................................................... 32 XII. Determination of caspase activity....................................................... 33 XIII. Mitochondrial membrane potential measurement.............................. 33 XIV. Trans-well invasion assay................................................................... 34 XV. RhoA activity assay............................................................................. 34 XVI. F-actin phalloidin staining.................................................................. 34 XVII. Subcutaneous implantation of cancer cells in animals and monitoring of in vivo anti-tumoral activity after drug treatment........ 34 XVIII. Immunohistochemistry....................................................................... 36 XIX. TUNEL (terminal deoxynucleotidyl transferase dUTP nick end labeling) assay............................................................................. 36 Results I. Low dose 3-indole induces cancer cells arrest in G1 phase and rescued by treated with ROS inhibitor........................................ 38 II. 3-indole induces DNA damage by ROS production.......................... 38 III. 3-indole arrests cell cycle in G1 phase through ATM/ATR pathway............................................................................................... 39 IV. Effect of 3-indole on the SMAD pathway.......................................... 40 V. Effect of 3-indole on signaling pathways in animal tumor tissue...... 40 VI. SK228 sufficiently inhibited cell growth of various lung cancer cell lines and esophagus carcinoma cell lines.................................... 41 VII. SK228 caused DNA damage through binding on DNA minor groove, intercalating to DNA, and induction of ROS production...... 41 VIII. SK228 induces apoptosis through intrinsic mitochondria -dependent pathway........................................................................... 43 IX. SK228 decreases cell invasion ability through inhibition of FAK/paxillin signaling pathway......................................................... 44 X. SK228 remarkably reduced tumor growth in Vivo without significant side effects....................................................................... 45 XI. SK228 induced apoptosis in animal tumor tissue.............................. 46 Discussion................................................................................................. 48 References ................................................................................................. 51 Figures....................................................................................................... 59 Table........................................................................................................... 73 Appendices…………………………………………………………….. 74

    Abraham, R.T. (2001). Cell cycle checkpoint signaling through the ATM and ATR kinases. Genes Dev 15, 2177-2196.
    Agarwal, C., Singh, R.P., and Agarwal, R. (2002). Grape seed extract induces apoptotic death of human prostate carcinoma DU145 cells via caspases activation accompanied by dissipation of mitochondrial membrane potential and cytochrome c release. Carcinogenesis 23, 1869-1876.
    Ahmad, I.M., Aykin-Burns, N., Sim, J.E., Walsh, S.A., Higashikubo, R., Buettner, G.R., Venkataraman, S., Mackey, M.A., Flanagan, S.W., Oberley, L.W., and Spitz, D.R. (2005). Mitochondrial O2*- and H2O2 mediate glucose deprivation-induced stress in human cancer cells. J Biol Chem 280, 4254-4263.
    Appella, E., and Anderson, C.W. (2001). Post-translational modifications and activation of p53 by genotoxic stresses. Eur J Biochem 268, 2764-2772.
    Arellano, M., and Moreno, S. (1997). Regulation of CDK/cyclin complexes during the cell cycle. Int J Biochem Cell Biol 29, 559-573.
    Bacher, G., Nickel, B., Emig, P., Vanhoefer, U., Seeber, S., Shandra, A., Klenner, T., and Beckers, T. (2001). D-24851, a novel synthetic microtubule inhibitor, exerts curative antitumoral activity in vivo, shows efficacy toward multidrug-resistant tumor cells, and lacks neurotoxicity. Cancer Res 61, 392-399.
    Bakkenist, C.J., and Kastan, M.B. (2004). Initiating cellular stress responses. Cell 118, 9-17.
    Bhalla, K.N. (2005). Epigenetic and chromatin modifiers as targeted therapy of hematologic malignancies. J Clin Oncol 23, 3971-3993.
    Bode, A.M., and Dong, Z. (2004). Post-translational modification of p53 in tumorigenesis. Nat Rev Cancer 4, 793-805.
    Brancale, A., and Silvestri, R. (2007). Indole, a core nucleus for potent inhibitors of tubulin polymerization. Med Res Rev 27, 209-238.
    Breckenridge, D.G., Germain, M., Mathai, J.P., Nguyen, M., and Shore, G.C. (2003). Regulation of apoptosis by endoplasmic reticulum pathways. Oncogene 22, 8608-8618.
    Broker, L.E., Kruyt, F.A., and Giaccone, G. (2005). Cell death independent of caspases: a review. Clin Cancer Res 11, 3155-3162.
    Broude, E.V., Swift, M.E., Vivo, C., Chang, B.D., Davis, B.M., Kalurupalle, S., Blagosklonny, M.V., and Roninson, I.B. (2007). p21(Waf1/Cip1/Sdi1) mediates retinoblastoma protein degradation. Oncogene 26, 6954-6958.
    Burhans, W.C., and Heintz, N.H. (2009). The cell cycle is a redox cycle: linking phase-specific targets to cell fate. Free Radic Biol Med 47, 1282-1293.
    Carragher, N.O., and Frame, M.C. (2004). Focal adhesion and actin dynamics: a place where kinases and proteases meet to promote invasion. Trends Cell Biol 14, 241-249.
    Chen, Y., and Poon, R.Y. (2008). The multiple checkpoint functions of CHK1 and CHK2 in maintenance of genome stability. Front Biosci 13, 5016-5029.
    Chipuk, J.E., and Green, D.R. (2008). How do BCL-2 proteins induce mitochondrial outer membrane permeabilization? Trends Cell Biol 18, 157-164.
    Cordero, M.D., Sanchez-Alcazar, J.A., Bautista-Ferrufino, M.R., Carmona-Lopez, M.I., Illanes, M., Rios, M.J., Garrido-Maraver, J., Alcudia, A., Navas, P., and de Miguel, M. (2010). Acute oxidant damage promoted on cancer cells by amitriptyline in comparison with some common chemotherapeutic drugs. Anticancer Drugs 21, 932-944.
    Danesi, R., de Braud, F., Fogli, S., de Pas, T.M., Di Paolo, A., Curigliano, G., and Del Tacca, M. (2003). Pharmacogenetics of anticancer drug sensitivity in non-small cell lung cancer. Pharmacol Rev 55, 57-103.
    Danial, N.N., and Korsmeyer, S.J. (2004). Cell death: critical control points. Cell 116, 205-219.
    Das, S., Boswell, S.A., Aaronson, S.A., and Lee, S.W. (2008). P53 promoter selection: choosing between life and death. Cell Cycle 7, 154-157.
    De Souza, C.P., Ellem, K.A., and Gabrielli, B.G. (2000). Centrosomal and cytoplasmic Cdc2/cyclin B1 activation precedes nuclear mitotic events. Exp Cell Res 257, 11-21.
    Desagher, S., and Martinou, J.C. (2000). Mitochondria as the central control point of apoptosis. Trends Cell Biol 10, 369-377.
    Dougherty, C.J., Kubasiak, L.A., Frazier, D.P., Li, H., Xiong, W.C., Bishopric, N.H., and Webster, K.A. (2004). Mitochondrial signals initiate the activation of c-Jun N-terminal kinase (JNK) by hypoxia-reoxygenation. Faseb J 18, 1060-1070.
    Du, J., Daniels, D.H., Asbury, C., Venkataraman, S., Liu, J., Spitz, D.R., Oberley, L.W., and Cullen, J.J. (2006). Mitochondrial production of reactive oxygen species mediate dicumarol-induced cytotoxicity in cancer cells. J Biol Chem 281, 37416-37426.
    Duflos, A., Kruczynski, A., and Barret, J.M. (2002). Novel aspects of natural and modified vinca alkaloids. Curr Med Chem Anticancer Agents 2, 55-70.
    Ellenbroek, S.I., and Collard, J.G. (2007). Rho GTPases: functions and association with cancer. Clin Exp Metastasis 24, 657-672.
    Elmore, S. (2007). Apoptosis: a review of programmed cell death. Toxicol Pathol 35, 495-516.
    Fakih, M.G., Pendyala, L., Fetterly, G., Toth, K., Zwiebel, J.A., Espinoza-Delgado, I., Litwin, A., Rustum, Y.M., Ross, M.E., Holleran, J.L., and Egorin, M.J. (2009). A phase I, pharmacokinetic and pharmacodynamic study on vorinostat in combination with 5-fluorouracil, leucovorin, and oxaliplatin in patients with refractory colorectal cancer. Clin Cancer Res 15, 3189-3195.
    Feng, X.H., Liang, Y.Y., Liang, M., Zhai, W., and Lin, X. (2002). Direct interaction of c-Myc with Smad2 and Smad3 to inhibit TGF-beta-mediated induction of the CDK inhibitor p15(Ink4B). Mol Cell 9, 133-143.
    Fidler, I.J. (2002). Critical determinants of metastasis. Semin Cancer Biol 12, 89-96.
    Fojo, T., and Bates, S. (2003). Strategies for reversing drug resistance. Oncogene 22, 7512-7523.
    Green, D.R. (2005). Apoptotic pathways: ten minutes to dead. Cell 121, 671-674.
    Grubbs, C.J., Steele, V.E., Casebolt, T., Juliana, M.M., Eto, I., Whitaker, L.M., Dragnev, K.H., Kelloff, G.J., and Lubet, R.L. (1995). Chemoprevention of chemically-induced mammary carcinogenesis by indole-3-carbinol. Anticancer Res 15, 709-716.
    Hasegawa, Y., Takano, T., Miyauchi, A., Matsuzuka, F., Yoshida, H., Kuma, K., and Amino, N. (2002). Decreased expression of glutathione peroxidase mRNA in thyroid anaplastic carcinoma. Cancer Lett 182, 69-74.
    He, G., Siddik, Z.H., Huang, Z., Wang, R., Koomen, J., Kobayashi, R., Khokhar, A.R., and Kuang, J. (2005). Induction of p21 by p53 following DNA damage inhibits both Cdk4 and Cdk2 activities. Oncogene 24, 2929-2943.
    Heath-Engel, H.M., Chang, N.C., and Shore, G.C. (2008). The endoplasmic reticulum in apoptosis and autophagy: role of the BCL-2 protein family. Oncogene 27, 6419-6433.
    Helfrich, B.A., Raben, D., Varella-Garcia, M., Gustafson, D., Chan, D.C., Bemis, L., Coldren, C., Baron, A., Zeng, C., Franklin, W.A., Hirsch, F.R., Gazdar, A., Minna, J., and Bunn, P.A., Jr. (2006). Antitumor activity of the epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor gefitinib (ZD1839, Iressa) in non-small cell lung cancer cell lines correlates with gene copy number and EGFR mutations but not EGFR protein levels. Clin Cancer Res 12, 7117-7125.
    Hood, J.D., and Cheresh, D.A. (2002). Role of integrins in cell invasion and migration. Nat Rev Cancer 2, 91-100.
    Huang, S.M., Lu, K.T., and Wang, Y.C. (2011). ATM/ATR and SMAD3 pathways contribute to 3-indole-induced G arrest in cancer cells and xenograft models. Anticancer Res 31, 203-208.
    Hunter, K.W., Crawford, N.P., and Alsarraj, J. (2008). Mechanisms of metastasis. Breast Cancer Res 10 Suppl 1, S2.
    Israels, E.D., and Israels, L.G. (2000). The cell cycle. Oncologist 5, 510-513.
    Jemal, A., Siegel, R., Xu, J., and Ward, E. (2010). Cancer statistics, 2010. CA Cancer J Clin 60, 277-300.
    Jin, L., Qi, M., Chen, D.Z., Anderson, A., Yang, G.Y., Arbeit, J.M., and Auborn, K.J. (1999). Indole-3-carbinol prevents cervical cancer in human papilloma virus type 16 (HPV16) transgenic mice. Cancer Res 59, 3991-3997.
    Johnson, D.G., and Walker, C.L. (1999). Cyclins and cell cycle checkpoints. Annu Rev Pharmacol Toxicol 39, 295-312.
    Juang, S.H., Lung, C.C., Hsu, P.C., Hsu, K.S., Li, Y.C., Hong, P.C., Shiah, H.S., Kuo, C.C., Huang, C.W., Wang, Y.C., Huang, L., Chen, T.S., Chen, S.F., Fu, K.C., Hsu, C.L., Lin, M.J., Chang, C.J., Ashendel, C.L., Chan, T.C., Chou, K.M., and Chang, J.Y. (2007). D-501036, a novel selenophene-based triheterocycle derivative, exhibits potent in vitro and in vivo antitumoral activity which involves DNA damage and ataxia telangiectasia-mutated nuclear protein kinase activation. Mol Cancer Ther 6, 193-202.
    Kim, I., Xu, W., and Reed, J.C. (2008). Cell death and endoplasmic reticulum stress: disease relevance and therapeutic opportunities. Nat Rev Drug Discov 7, 1013-1030.
    Kodama, A., Matozaki, T., Shinohara, M., Fukuhara, A., Tachibana, K., Ichihashi, M., Nakanishi, H., and Takai, Y. (2001). Regulation of Ras and Rho small G proteins by SHP-2. Genes Cells 6, 869-876.
    Kruczynski, A., Poli, M., Dossi, R., Chazottes, E., Berrichon, G., Ricome, C., Giavazzi, R., Hill, B.T., and Taraboletti, G. (2006). Anti-angiogenic, vascular-disrupting and anti-metastatic activities of vinflunine, the latest vinca alkaloid in clinical development. Eur J Cancer 42, 2821-2832.
    Kuo, C.C., Hsieh, H.P., Pan, W.Y., Chen, C.P., Liou, J.P., Lee, S.J., Chang, Y.L., Chen, L.T., Chen, C.T., and Chang, J.Y. (2004). BPR0L075, a novel synthetic indole compound with antimitotic activity in human cancer cells, exerts effective antitumoral activity in vivo. Cancer Res 64, 4621-4628.
    Lee, C.H., Yao, C.F., Huang, S.M., Ko, S., Tan, Y.H., Lee-Chen, G.J., and Wang, Y.C. (2008). Novel 2-step synthetic indole compound 1,1,3-tri(3-indolyl)cyclohexane inhibits cancer cell growth in lung cancer cells and xenograft models. Cancer 113, 815-825.
    Li, P.-Y., Changa, Y.-C., Tzang, B.-S., Chend, C.-C., and Liu, Y.-C. (2007). Antibiotic amoxicillin induces DNA lesions in mammalian cells possibly via the reactive oxygen species. Mutation Research 629, 133-139.
    Liebermann, D.A., Hoffman, B., and Vesely, D. (2007). p53 induced growth arrest versus apoptosis and its modulation by survival cytokines. Cell Cycle 6, 166-170.
    Lin, D.C., Du, X.L., and Wang, M.R. (2009). Protein alterations in ESCC and clinical implications: a review. Dis Esophagus 22, 9-20.
    Liu, Q., Guntuku, S., Cui, X.S., Matsuoka, S., Cortez, D., Tamai, K., Luo, G., Carattini-Rivera, S., DeMayo, F., Bradley, A., Donehower, L.A., and Elledge, S.J. (2000). Chk1 is an essential kinase that is regulated by Atr and required for the G(2)/M DNA damage checkpoint. Genes Dev 14, 1448-1459.
    Liu, X., Kim, C.N., Yang, J., Jemmerson, R., and Wang, X. (1996). Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell 86, 147-157.
    Luo, W., Liu, J., Li, J., Zhang, D., Liu, M., Addo, J.K., Patil, S., Zhang, L., Yu, J., Buolamwini, J.K., Chen, J., and Huang, C. (2008). Anti-cancer effects of JKA97 are associated with its induction of cell apoptosis via a Bax-dependent and p53-independent pathway. J Biol Chem 283, 8624-8633.
    Mann, B.S., Johnson, J.R., Cohen, M.H., Justice, R., and Pazdur, R. (2007). FDA approval summary: vorinostat for treatment of advanced primary cutaneous T-cell lymphoma. Oncologist 12, 1247-1252.
    Marchetti, P., Castedo, M., Susin, S.A., Zamzami, N., Hirsch, T., Macho, A., Haeffner, A., Hirsch, F., Geuskens, M., and Kroemer, G. (1996). Mitochondrial permeability transition is a central coordinating event of apoptosis. J Exp Med 184, 1155-1160.
    Mariette, C., Piessen, G., and Triboulet, J.P. (2007). Therapeutic strategies in oesophageal carcinoma: role of surgery and other modalities. Lancet Oncol 8, 545-553.
    Marks, L.B., Garst, J., Socinski, M.A., Sibley, G., Blackstock, A.W., Herndon, J.E., Zhou, S., Shafman, T., Tisch, A., Clough, R., Yu, X., Turrisi, A., Anscher, M., Crawford, J., and Rosenman, J. (2004). Carboplatin/paclitaxel or carboplatin/vinorelbine followed by accelerated hyperfractionated conformal radiation therapy: report of a prospective phase I dose escalation trial from the Carolina Conformal Therapy Consortium. J Clin Oncol 22, 4329-4340.
    Millet, C., and Zhang, Y.E. (2007). Roles of Smad3 in TGF-beta signaling during carcinogenesis. Crit Rev Eukaryot Gene Expr 17, 281-293.
    Minucci, S., and Pelicci, P.G. (2006). Histone deacetylase inhibitors and the promise of epigenetic (and more) treatments for cancer. Nat Rev Cancer 6, 38-51.
    Mitra, S.K., Hanson, D.A., and Schlaepfer, D.D. (2005). Focal adhesion kinase: in command and control of cell motility. Nat Rev Mol Cell Biol 6, 56-68.
    Montecucco, A., Pedrali-Noy, G., Spadari, S., Zanolin, E., and Ciarrocchi, G. (1988). DNA unwinding and inhibition of T4 DNA ligase by anthracyclines. Nucleic Acids Res 16, 3907-3918.
    Mukhopadhyay, P., Rajesh, M., Hasko, G., Hawkins, B.J., Madesh, M., and Pacher, P. (2007). Simultaneous detection of apoptosis and mitochondrial superoxide production in live cells by flow cytometry and confocal microscopy. Nat Protoc 2, 2295-2301.
    Nakagawa, T., Zhu, H., Morishima, N., Li, E., Xu, J., Yankner, B.A., and Yuan, J. (2000). Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-beta. Nature 403, 98-103.
    Nemajerova, A., Talos, F., Moll, U.M., and Petrenko, O. (2008). Rb function is required for E1A-induced S-phase checkpoint activation. Cell Death Differ 15, 1440-1449.
    Pardali, K., Kurisaki, A., Moren, A., ten Dijke, P., Kardassis, D., and Moustakas, A. (2000). Role of Smad proteins and transcription factor Sp1 in p21(Waf1/Cip1) regulation by transforming growth factor-beta. J Biol Chem 275, 29244-29256.
    Pelicano, H., Carney, D., and Huang, P. (2004). ROS stress in cancer cells and therapeutic implications. Drug Resist Updat 7, 97-110.
    Pera, M., Manterola, C., Vidal, O., and Grande, L. (2005). Epidemiology of esophageal adenocarcinoma. J Surg Oncol 92, 151-159.
    Pfister, D.G., Johnson, D.H., Azzoli, C.G., Sause, W., Smith, T.J., Baker, S., Jr., Olak, J., Stover, D., Strawn, J.R., Turrisi, A.T., and Somerfield, M.R. (2004). American Society of Clinical Oncology treatment of unresectable non-small-cell lung cancer guideline: update 2003. J Clin Oncol 22, 330-353.
    Porter, A.G. (1999). Protein translocation in apoptosis. Trends Cell Biol 9, 394-401.
    Rathinam, R., and Alahari, S.K. (2010). Important role of integrins in the cancer biology. Cancer Metastasis Rev 29, 223-237.
    Ray, D., Terao, Y., Nimbalkar, D., Chu, L.H., Donzelli, M., Tsutsui, T., Zou, X., Ghosh, A.K., Varga, J., Draetta, G.F., and Kiyokawa, H. (2005). Transforming growth factor beta facilitates beta-TrCP-mediated degradation of Cdc25A in a Smad3-dependent manner. Mol Cell Biol 25, 3338-3347.
    Riedl, S.J., and Salvesen, G.S. (2007). The apoptosome: signalling platform of cell death. Nat Rev Mol Cell Biol 8, 405-413.
    Rigas, B., and Sun, Y. (2008). Induction of oxidative stress as a mechanism of action of chemopreventive agents against cancer. Br J Cancer 98, 1157-1160.
    Rivera, F., Vega-Villegas, M.E., and Lopez-Brea, M.F. (2007). Chemotherapy of advanced gastric cancer. Cancer Treat Rev 33, 315-324.
    Safe, S., Papineni, S., and Chintharlapalli, S. (2008). Cancer chemotherapy with indole-3-carbinol, bis(3'-indolyl)methane and synthetic analogs. Cancer Lett 269, 326-338.
    Sato, K., Ito, K., Kohara, H., Yamaguchi, Y., Adachi, K., and Endo, H. (1992). Negative regulation of catalase gene expression in hepatoma cells. Mol Cell Biol 12, 2525-2533.
    Selivanov, V.A., Vizan, P., Mollinedo, F., Fan, T.W., Lee, P.W., and Cascante, M. (2010). Edelfosine-induced metabolic changes in cancer cells that precede the overproduction of reactive oxygen species and apoptosis. BMC Syst Biol 4, 135.
    Sherr, C.J., and Roberts, J.M. (1999). CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev 13, 1501-1512.
    Shi, Y. (2001). A structural view of mitochondria-mediated apoptosis. Nat Struct Biol 8, 394-401.
    Soengas, M.S., Capodieci, P., Polsky, D., Mora, J., Esteller, M., Opitz-Araya, X., McCombie, R., Herman, J.G., Gerald, W.L., Lazebnik, Y.A., Cordon-Cardo, C., and Lowe, S.W. (2001). Inactivation of the apoptosis effector Apaf-1 in malignant melanoma. Nature 409, 207-211.
    Stinchcombe, T.E., and Socinski, M.A. (2009). Current treatments for advanced stage non-small cell lung cancer. Proc Am Thorac Soc 6, 233-241.
    Stoner, G.D., and Gupta, A. (2001). Etiology and chemoprevention of esophageal squamous cell carcinoma. Carcinogenesis 22, 1737-1746.
    Szatrowski, T.P., and Nathan, C.F. (1991). Production of large amounts of hydrogen peroxide by human tumor cells. Cancer Res 51, 794-798.
    Trachootham, D., Alexandre, J., and Huang, P. (2009). Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? Nat Rev Drug Discov 8, 579-591.
    Tyson, J.J., Csikasz-Nagy, A., and Novak, B. (2002). The dynamics of cell cycle regulation. Bioessays 24, 1095-1109.
    Umar, S.B., and Fleischer, D.E. (2008). Esophageal cancer: epidemiology, pathogenesis and prevention. Nat Clin Pract Gastroenterol Hepatol 5, 517-526.
    van Meerten, E., and van der Gaast, A. (2005). Systemic treatment for oesophageal cancer. Eur J Cancer 41, 664-672.
    Weber, G.F. (2008). Molecular mechanisms of metastasis. Cancer Lett 270, 181-190.
    Wyllie, A.H., and Golstein, P. (2001). More than one way to go. Proc Natl Acad Sci U S A 98, 11-13.
    Xu, W.S., Parmigiani, R.B., and Marks, P.A. (2007). Histone deacetylase inhibitors: molecular mechanisms of action. Oncogene 26, 5541-5552.
    Zapata, J.M., Pawlowski, K., Haas, E., Ware, C.F., Godzik, A., and Reed, J.C. (2001). A diverse family of proteins containing tumor necrosis factor receptor-associated factor domains. J Biol Chem 276, 24242-24252.
    Zhang, G.X., Lu, X.M., Kimura, S., and Nishiyama, A. (2007a). Role of mitochondria in angiotensin II-induced reactive oxygen species and mitogen-activated protein kinase activation. Cardiovasc Res 76, 204-212.
    Zhang, H., Gajate, C., Yu, L.P., Fang, Y.X., and Mollinedo, F. (2007b). Mitochondrial-derived ROS in edelfosine-induced apoptosis in yeasts and tumor cells. Acta Pharmacol Sin 28, 888-894.
    Zhao, W., Mackenzie, G.G., Murray, O.T., Zhang, Z., and Rigas, B. (2009). Phosphoaspirin (MDC-43), a novel benzyl ester of aspirin, inhibits the growth of human cancer cell lines more potently than aspirin: a redox-dependent effect. Carcinogenesis 30, 512-519.
    Zou, X., Tsutsui, T., Ray, D., Blomquist, J.F., Ichijo, H., Ucker, D.S., and Kiyokawa, H. (2001). The cell cycle-regulatory CDC25A phosphatase inhibits apoptosis signal-regulating kinase 1. Mol Cell Biol 21, 4818-4828.

    下載圖示
    QR CODE