簡易檢索 / 詳目顯示

研究生: 劉秀娟
Lau,Shiu-Chung
論文名稱: 探討教-學序列對八年級學生建立電解質概念及心智模式的影響
指導教授: 邱美虹
Chiu, Mei-Hung
學位類別: 碩士
Master
系所名稱: 科學教育研究所
Graduate Institute of Science Education
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 183
中文關鍵詞: 教-學序列心智模式電解質
英文關鍵詞: Mental model, TLS
論文種類: 學術論文
相關次數: 點閱:104下載:60
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
    「電解質」是化學教材中相當重要的單元之一,從中小學乃至於大學有關化學的課程,該相關概念皆佔有相當重要的地位。而且「電解質」概念可說是後續進行酸鹼中和、電化學電池、電流的化學效應等相關電化學概念的基礎。但是學生在經過學習後卻仍存在有微觀的迷思概念。因此本研究希望設計一份試題協助教師進行診斷,了解學生在「電解質」概念上的迷思概念;並利用TLS(教-學序列)的設計原則設計一份針對學生迷思概念的教材。
    依據上述的目的,本研究的問題有:(一)TLS是否可以幫助學生學習電解質概念?(二)TLS對學生學習電解質的心智模式的改變?因此本研究選取「解離」、「電中性」、「導電的原因」及「離子的運動情形」四個教學主題,並隨機選取兩班八年級學生作為對照組與TLS實驗組進行教學研究。
    本研究的結果如下:
    1.就學習的成效:兩組在教學前的前測成績並無顯著差異,經過教學後,在後測
    及延宕測驗的成績上,TLS實驗組皆優於對照組,並且有顯著差異。
    2.就概念的學習及電解質的心智模式一致性而言:
    (1)電解質導電的微觀解釋:後測中實驗組有82%的學生持有離子的心智模
    式,對照組有48%的學生持有離子的心智模式。延宕測驗中實驗組有78
    %的學生持有離子的心智模式,對照組有52%的學生持有離子的心智模
    式。
    (2)電中性概念:後測中實驗組有59%的學生持有總電量的心智模式,對照組
    中有48%的學生持有總電量的心智模式。延宕測驗中實驗組有67%的學生
    持有總電量的心智模式,對照組中有49%的學生持有總電量的心智模式。
    (3)通電前後粒子移動的概念:通電前粒子移動方向的概念部份,後測中實
    驗組有83.9%的學生持有隨機運動的心智模式,對照組中有70.6%的學生持
    有隨機運動的心智模式。延宕測驗中實驗組有74.2%的學生持有隨機運動的
    心智模式,對照組中有67.6%的學生持有隨機運動的心智模式。通電後粒子
    移動方向的概念部份,後測中實驗組有93.5%的學生持有正離子移向負極的
    心智模式,對照組中有76.5%的學生持有正離子移向負極的心智模式。延宕
    測驗中實驗組有93.5%的學生持有正離子移向負極的心智模式,對照組中有
    79.4%的學生持有正離子移向負極的心智模式。
    (4).電解質部分解離的概念:後測中實驗組有59.4%的學生持有部分解離且
    離子比分子多的心智模式,對照組有45.5%的學生持有部分解離且離子比
    分子多的心智模式。延宕測驗中實驗組有46.9%的學生持有部分解離且離
    子比分子多的心智模式,對照組有43.8%的學生持有部分解離且離子比分
    子多的心智模式。
    3.就情意面向而言:TLS實驗組學生認為此次的教學可以幫助理解且較有趣,對本次教學所抱持的態度是正向的。
    綜合以上所述,本研究實驗組所使用的TLS教學策略似乎可以幫助學生建立較佳的「電解質」心智模式。

    Abstract
    The concept of electrolyte has played an important role in learning chemistry, from the elementary and middle schools and even to the university. Moreover, the "electrolyte" concept is a basic concept of the acids, bases, and salt and electro- chemical cell, electric current. But students actually still existed misconceptions after the process of study.
    This research hopes to designs a test question to help the teacher to understand the students’ misconceptions in "electrolyte" and use the designing principle of TLS (teaching- learning sequence) to designs teaching material which focuses on students’ misconceptions.
    According to the purpose mentioned above, the research questions were as follows. First, could TLS help student learn the electrolyte or not? Second, how students' mental models changes after instruction?
    Therefore this research selection "the dissociation", "the electricity neutrality", "the reason of electric conduction " and "the ion movement situation" four teaching subjects, and stochastically select two class of students conduct the teaching research as the control group and the TLS experiment group.
    This research result as follows:
    1. On study result: as for concept learning, TLS group performed better than the other group.
    2. The mental model of electrolyte:
    (1) Electrolyte electric conduction microscopic explanation that:In past tests showed 82% TLS group students' major mental model were “atom”, the control group were 48% s. In delays test showed 78% TLS group students ' major mental model were “atom”, the control group were 52% .
    (2) Electricity neutral concept: In past tests showed 59% TLS group students ' major mental model were “total electric quantity”, the control group were 48% s. In delays test showed 67% TLS group students ' major mental model were “total electric quantity”, the control group were 49% .
    (3) the atoms' movement: In past tests showed 83.9% TLS group students' major mental model were “random motion”, the control group were 70.6% s. In delays test showed 74.2% TLS group students ' major mental model were “random motion”, the control group were 67.6% . In past tests showed 93.5% TLS group students ' major mental model were “the cation move to the cathode”, the control group were 76.5% s. In delays test showed 93.5% TLS group students ' major mental model were “the cation move to the cathode”, the control group were 73.4% .
    (4) Electrolyte partial dissociation concept: In past tests showed 59.4% TLS group students' major mental model were “partial dissociation”, the control group were 45.5% s. In delays test showed 46.9% TLS group students' major mental model were “partial dissociation”, the control group were 43.8%.
    3. About learning attitude,students in TLS group thought this teaching was interesting, not too hard to understand ,and might promote the understanding. TLS group had the most positive attitude.
    Above the synthesis states, this teaching strategy may help the student to establish good mental models of “electrolyte".

    目 次 第壹章 緒論 1 第一節 研究背景與研究動機 1 第二節 研究目的及問題 3 第三節 名詞解釋 4 第四節 研究的基本假定與限制 7 第貳章 文獻探討 9 第一節 電解質迷思概念 9 第二節 心智模式 13 第三節 教學序列 20 第四節 動態表徵 31 第參章 研究方法 39 第一節 研究設計 39 第二節 研究流程 41 第三節 研究對象 43 第四節 研究工具 44 第五節 資料分析與處理 49 第肆章 研究結果與討論 51 第一節 概念學習的比較與分析 51 第二節 電解質的心智模式種類與分佈 77 第三節 教-學序列對電解質概念學習的影響 115 第四節 概念學習情意面向的分析 117 第伍章 結論與建議 121 第一節 結論 121 第二節 建議 123 參考文獻 124 附錄 133 附錄一 開放性試題 133 附錄二 前測試題 136 附錄三 後測試題 147 附錄四 文本 157 附錄五 實驗組教-學序列 173 附錄六 學習單 177 附錄七 動態評量 180 附錄八 概念圖 182 附錄九 命題陳述 183 附錄十 情意問卷 184 表 次 表2-1-1 電解質命題概念的命題陳述與對應的迷思概念 12 表3-4-1 前後測雙向細目表 45 表4-1-1 教學前概念學習成就之成對T考驗 51 表4-1-2 概念命題陳述與兩組學生迷思概念的比例 52 表4-1-3 教學前後測概念學習成就之成對T考驗 54 表4-1-4 延宕測驗與教學前後概念學習成就之成對T考驗 55 表4-1-5 教學後動態評量之成對T考驗 56 表4-1-6 兩組學生間前、後、延宕測驗成對T考驗 57 表4-1-7 前測(延宕)巨觀現象的題目敘述 58 表4-1-8 電解質導電之巨觀現象的答對率(%)與統計考驗 59 表4-1-9 前測(延宕)電解質導電微觀解釋的題目敘述 60 表4-1-10 電解質導電微觀解釋的答對率(%)與統計考驗 62 表4-1-11 電中性巨觀試題 63 表4-1-12 電中性微觀試題 63 表4-1-13 電中性應用試題 65 表4-1-14 電中性概念試題答對率與統計考驗 65 表4-1-15 解離概念試題 67 表4-1-16 解離概念試題答對率與統計考驗 69 表4-1-17 通電前粒子移動方向試題 67 表4-1-18 通電前粒子移動方向測驗答對率(%)與統計考驗 67 表4-1-19 通電後粒子移動方向測驗答對率(%)與統計考驗 70 表4-2-1 解釋導電原因的心智模式種類分佈(%) 75 表4-2-2 導電原因的心智模式轉換的比例 78 表4-2-3 解釋水溶液是電中性的心智模式種類分佈(%) 83 表4-2-4 解釋水溶液是電中性的心智模式的轉換比例(%) 85 表4-2-5 通電前水溶液中粒子移動的心智模式種類及所佔比例(%) 90 表4-2-6 通電後水溶液粒子移動的心智模式種類及所佔比例(%) 91 表4-2-7 通電前水溶液中粒子移動的心智模式的轉換比例 93 表4-2-8 通電後水溶液粒子移動的心智模式的轉換比例(%) 95 表4-2-9 解離概念的心智模式種類及所佔比例(%) 102 表4-2-10 解離概念的心智模式轉換比例 103 圖 次 圖 2-2-1 Chi對心智模式一致性的看法 16 圖 2-3-1 教育重構組成圖 23 圖 2-3-2 教導菱形圖 25 圖 2-3-3 教學實驗的階段圖 28 圖 3-2-1 研究流程圖 39 圖 4-1-1 教學前後概念學習成就之平均答對率 51 圖 4-1-2 前後測與延宕測驗的平均答對率 53 圖 4-1-3 實驗組與控制組動態評量之比較 53 圖4-1-4 電解質導電巨觀現象的答對率(%) 57 圖4-1-5 兩組電解質導電微觀解釋的答對率(%) 59 圖4-1-6 電中性概念答對率 63 圖4-1-7 解離概念試題答對率 66 圖4-1-8 通電前粒子移動方向試題答對率(%) 70 圖4-1-9 通電後粒子移動方向試題答對率(%) 71 圖4-2-1 導電原因的心智模式種類分佈比例圖 76 圖4-2-2 實驗組學生導電的微觀解釋心智模式的演變圖(%) 80 圖4-2-3 控制組學生導電的微觀解釋心智模式的演變圖 81 圖4-2-4 兩組學生解釋水溶液是電中性的心智模式種類比例 83 圖4-2-5 實驗組電中性概念心智模式演變圖 87 圖4-2-6 控制組電中性概念心智模式演變圖 88 圖4-2-7 通電前水溶液中粒子移動的心智模式種類比例圖 90 圖4-2-8 通電後水溶液粒子移動的心智模式比例圖 91 圖4-2-9 實驗組通電前粒子移動心智模式轉變圖 96 圖4-2-10 控制組通電前粒子移動心智模式轉變圖 97 圖4-2-11 實驗組通電後離子移動心智模式轉變圖 98 圖4-2-12 控制組通電後離子移動心智模式轉變圖 99 圖4-2-13 解離概念的心智模式比例圖 102 圖4-2-14 實驗組電解質部分解離心智模式轉變圖 105 圖4-2-15 控制組電解質部分解離心智模式轉變圖 106 圖4-3-1 兩組對整體教學的同意度 111 圖4-3-2 兩組對「理解」面向的同意程度(%) 112 圖4-3-3 兩組對「非複雜/非負擔」面向的同意程度(%) 113 圖4-3-4 兩組學生對「生動/吸引人」面向的同意程度(%) 113

    參考文獻
    中文文獻
    王亦欣(2003):探討國二學生閱讀漫畫表徵的文本對地球科學概念學習的影響— 以天文和溫室效應為例,台灣師大科學教育研究所碩士論文(未出版)。
    宋志雄(1993):探究國三學生酸與鹼的迷思概念並應用以發展教學診斷工具。
    科學教育(彰化師大),4,1-23。
    何佳燕(2002):探討粒子概念對國二學生學習溫度與熱的學習成就與心智模式
    之影響。國立臺灣師範大學科學教育研究所。
    邱美虹與林靜雯(2002):以多重類比探究兒童電流心智模式之改變。科學教育學
    刊,10(2),109-134。
    邱美虹和翁雪琴(1995):國三學生「四季成因」之心智模式與推論歷程之探討。
    科學教育學刊, 3(1), 23-68。
    林靜雯(2000):由概念改變及心智模式初探多重類比對國小四年級學生電學概念
    學習之影響。台北市:國立臺灣師範大學科學教育研究所碩士論文。
    林靜雯(2005):由概念演化觀點探究不同教科書教-學序列對不同心智模式學
    生電學學習之影響。台北市:國立臺灣師範大學博士論文(未出版)。
    林靜雯與邱美虹(2005):整合類比與多重表徵研究取向探究多重類比設計對兒童
    電學概念學習之影響。科學教育學刊,13(3),317-345。
    姚錦棟(2003):我國中學生酸鹼鹽迷思概念和心智模式之研究。國立台灣師範
    大學科學教育研究所碩士論文。
    莊雅茹(1996):CAL軟體動畫介面設計,教學科技與媒體,28,13-18。
    郭重吉(1988):從認知觀點探討自然科的學習。教育學院學報,13,335-363。
    張榮耀(2000):以科學史與本體論的觀點探討概念改變之機制。台北市:國立
    台灣師範大學科學教育研究所碩士論文。
    張仁邦和張振松(2000):日出日落的電腦模擬,科學教育研究與發展專刊,89.
    12月,47-68頁。
    張仁邦和蕭倍元(2000):地球運動之電腦模擬,國教新知,46(3),58-68。
    張欣怡(1997):地球科學不同克文表徵教材對學習表現之研究,台灣師大科學
    教育研究所碩士論文。
    陳珊珊(1993):探究國三學生酸與鹼的迷思概念並應用以發展診斷式工具,台
    北市:國立台灣師範大學化學研究所碩士論文。
    陳婉茹(2004):探討動態類比對於化學平衡概念學習之研究-八年級學生概念本
    體及心智模式之變化。國立臺灣師範大學科學教育研究所。
    陳盈吉(2004):探究動態類比對於科學概念學習與概念改變歷程之研究-以國
    二學生學習氣體粒子概念為例。國立臺灣師範大學科學教育研究所。
    詹麗卿(2003):,《中等學校化學動畫教材之研製》,台灣師範大學化學系研究
    所論文。
    楊純珠(1999):「溶液」多媒體CAL之概念學習研究。台北市:國立台灣師範
    大學化學研究所碩士論文。
    趙素敏(2003):國小學童酸鹼迷思概念類型與成因之研究。台北市立師範學院
    科學教育研究所碩士論文。
    劉俊庚(2002):迷思概念與概念改變教學策略之文獻分析—以概念構圖和後設分
    析模式探討其意涵與影響。台北市:國立臺灣師範大學科學教育研究所碩士
    論文。
    教育部(2003):國民中小學九年一貫課程暫行綱要--「自然與生活科技」課程
    綱要。教育部編印。

    英文文獻
    Ainsworth, S. E., Bibby, P. A., & Wood, D. J. (2002). Examining the effects
    Of different multiple representational systems in learning primary
    mathematics. Journal of the Learning Sciences. 11(1), 25-62.
    Abimbola, I, O. (1988). The problem of terminology in the study of student
    conceptions in science. Science Education, 72, 175-184
    Andersson, B., & Bach, F. (1996). Developing new teaching sequences in
    science: The example of "gases and their properties". Paper presented
    at the Research in Science Education in Europe: Current Issues and
    Themes, London.
    Asoko, H. (1996). Developing scientific concepts in the primary
    classroom: Teaching about electric circuits. In G. Welford, J.
    Osborne & P. Scott (Eds.), Research in science education in Europe.
    London / Washington, D. C.: Falmer Press.
    Artigue, M. (1988). Ingéniérie didactique. Recherches en didactique des
    Mathématiques, 9(3), 281–308.
    Anderson,C.W.Smith.E.L.Teaching
    science.In:Richardson-Koehler.Educators' Handbook:A research
    perspective.White Plains,NY:Longman,Inc,1987:84-111
    Ainsworth, S. E., (1999). A functional taxonomy of multiple
    representations.Computers and Education, 33(2/3), 131-152. ISSN
    0360-1315
    Baek, Y. K. & Layne, B. H. (1988). Color, graphics, and animation in a
    computer assisted learning tutorial lesson. Journal of
    Computer-Based Instruction, 15(4), 131-135
    Borges, A. T., & Gilbert, J. K. (1999). Mental models of electricity.
    International Journal of Science Education, 21(1), 98-117.
    Bruner , J.S.(1960 ).The process of education.
    Bybee, R. W., & deBoer, G. E. (1994). Research on goals for the science
    curriculum. In D. L. Gabel. (Ed.), Handbook of research on science
    teaching and learning. New York: Macmillan.
    Boohan, R. (1996). Using a picture language to teach about processes of
    change. Paper presented at the Research in Science Education in
    Europe: Current Issues and Themes, London
    Chi, M. T. H. (1992). Conceptual change within and across ontological
    categories: Implications for learning and discovery in sciences.
    Chi, M. T. H. (I997). Creativity: Shifting across ontological categories
    flexibly.In Ward, T. B., Smith, S. M., & Vaid J. (Eds.), Conceptual
    Structures and processes: Emergence, Discovery and Change.
    (209-234). Washington, D.C: American Psychological Association.
    Chi, M. T. H. (2000). Cognitive understanding levels. Encyclopedia of
    Psychology. In Kazkin, A. E. (Ed), 2:146-151. APA and Oxford
    University Press.
    Chi, M. T. H. (in press). Common Sense Conceptions of Emergent Processes.
    Journal of the Learning Sciences.
    Chi, M. T. H. & Hausmann, R. G. M. (2003). Do radical discoveries require
    ontological shifts? International Handbook on Innovation. Shavinina,
    L.V. (Ed.) Elsevier Science Ltd., 430-444.
    Chi, M. T. H., & Roscoe, R. D. (2002). The processes and challenges of
    Conceptual change. In M. Limon & L. Mason (Eds.), Reconsidering
    conceptual change:Issues in theory and practice (pp. 3-27).
    Netherlands: Kluwer Academic Publishers.
    Craik, K. (1943). The nature of explanation.Cambridge, England: Cambridge
    University Press.
    Chang, C.Y., & Barufaldi, J.P. (1999). The use of a
    problem-solving-based instructional model in initiating change in
    students’ achievement and alternative frameworks. International
    Journal of Science Education, 21(4),373-388.
    Cox, R. & Brna, P. (1995). Supporting the use of external representations
    in problem solving: The need for flexible learning environments.
    Journal of Artificial Intelligence in Education, 6, 239-302
    diSessa, A. A. (1988). Knowledge in pieces. In G. F. a. P. Pufall (Ed.),
    Constructivism in the computer age. Cambridge, MA: MIT Press.
    diSessa, A. A. (1993). Towards an epistemology of physics. Cognition and
    Instruction,10(2 & 3), 105-225.
    Driver, R. & Easley, J. (1978). Puiples and Paradigms: A review of
    literature related to concept development in adolescent science
    students. Science Education, 5,61-84.
    Driver, R. (1985). Beyond appearances: The conservation of matter under
    physical and chemical transformations. In R. Driver, E. Guesne, &
    A Tiberghien (Eds.), Children’s ideas in science (pp.145-169).
    Philadelphia: Open University Press.
    D. Jong (Eds.), Learning with Multiple Repre-sentations (pp. 41-66). New
    York: Pergamon.
    Dufour-Janvier, B., Bednarz, N., & Belanger, M. (1987). Pedagogical
    Considerations Concerning the Problem of Representation. In:
    Janvier,C. (Ed.), Problems of Representation in the Teaching and
    Learning of Mathematics, Lawrence Erlbaum Associates, Publishers,
    Hillsdale,New Jersey, London
    Gentner, D. & Stevens, A. (1983). Mental Models. Hillsdale, NJ: Erlbaum.
    Gunstone, R. F., & Mitchell, I. J. (1998). Metacognition and conceptual
    change. In J. J.
    Helm, H. & Novak, J. D. (1983).Proceedings of The International Seminar
    on Misconceptions in Science And Mathematics.Ithaca, NY: Department
    of Education, Cornell University.
    Johnstone, A. H. (1993). The development of chemistry teaching. Journal
    Of Chemical Education, 70(9), 701-705.at the National
    Associate of Research in Science Teaching 1995, San Francisco, CA.
    Johnson-Laird, P. N. (1983). Mental models: Towards a cognitive science
    oflanguage, inference, and consciousness. Cambridge, MA: Harvard
    UniversityPress.
    Johnson-Laird, P. N. (1989). Mental Models. In M. I. Posner (Ed.),
    Foundations of cognitive science (pp. 469-499). Cambridge, MA: MIT
    Press.
    Kattmann, M., Duit, R., Gropengieber, H., & Komorek, M. (1995). A model
    Of educational reconstruction. Paper presented at the National
    Associate of Research in Science Teaching 1995, San Francisco, CA.
    Komorek, M., & Duit, R. (2004). The teaching experiment as a powerful
    method to develop and evaluate teaching and learning sequences in
    the domain of non-linear systems. International Journal of Science
    Education, 26(5),619-633.
    Kattmann, M., Duit, R., Gropengieber, H., & Komorek, M. (1995). A model
    Of educational reconstruction. Paper presente
    Levin, J. R., Anglin, G. J., & Carney, R. N. (1987). On empirically
    Validating functions of pictures in prose, in: Willows, D.M. &
    Houghton, H.A. (Eds.), The Psychology of Illustration. Vol. 1: Basic
    Research, New York: Springer, 1-50. 219
    Levin, J. R. & et Lesgold, A. M. (1978). On pictures in prose. Educational
    Communication and Technology Journal, 26, 233-243.
    Lijnse, P. (1995). "Developmental research" as a way to an empirically
    based "didactical structure" of science. Science Education, 79(2),
    189-199.
    Lijnse, P. (2000). Didactics of science: The forgotten dimension in
    science education research? In R. Millar, J. Leach & J. Osborne
    (Eds.), Improving science education: The contribution of research
    (pp. 308-326). Buckingham: Open University Press.
    Lijnse, P., & Klaassen, K. (2004). Didactical structures as an outcome
    of research on teaching-learning sequence. International Journal of
    Science Education, 26(5), 537-554.
    Linn, M. C., & Songer, N. B. (1991). Teaching thermodynamics to middle
    school students: What are appropriate cognitive demands? Journal of
    Research in Science Teaching, 28, 885-918.
    Lesh, R., Post, T., & Behr, M. (1987). Representations and translations
    among representations in mathematics learning and problem solving.
    In: Janvier C. (Ed.) Problems of representation in the teaching and
    learning of mathematics. Hillsdale, NJ: Lawrence Erlbaum
    Associates.33-40.
    Mayer, R. E. (1997). Multimedia learning: Are we asking the right
    questions? Educational Psychologist, 32, 1-19
    Morecroft, J. D. W., & Sterman, J. D. (1994). Modeling for Learning
    Organizations. Portland, OR: Productivity Press.
    Mortimer, E. F. (1993). The evolution of students' explanations for the
    physical state of matter as a change in their conceptual profile.
    Paper presented at the European Research in Science Education:
    Proceedings of the First PhD Summerschool, Utrecht
    Méheut, M. (2004). Designing and validating two teaching-learning
    sequences about particle models. International Journal of Science
    Education, 26(5), 605-618.
    Méheut, M., & Psillos, D. (2000). Designing and validating
    teaching-learning sequences in a research perspective. Paper
    presented at the An International Symposium, Paris.
    Méheut, M., & Psillos, D. (2004). Teaching-learning sequences: Aims and
    tools for science education research. International Journal of
    Science Education, 26(5), 515-535.
    Mintzes, J. H. Wandersee & J. D. Novak (Eds.), Teaching science for
    understanding: A human constructivist view. San Diego: Academic
    Press.
    Norman, D. A. (1983). Some observations on mental models. In Gentner,
    D.& Stevens, A. (Eds.), Mental models (15-34). Hillsdale,
    NJ: Lawrence Erlbaum.
    Niedderer, H., & Goldberg, F. (1995, 7th - 11th April). Learning pathway
    And knowledge construction in electric circuit. Paper presented at
    the European Conference on Research in Science Education, Leeds, UK.
    Niedderer, H. (1997). Learning process studies in physics: A review of
    concepts and results. Paper presented at the American Educational
    Research Association, Chicago.
    Onno de Jong(2000).Crossing the borders:Chemical education research
    And teaching practice.University Chemistry Education 2000,4 (1) .
    Peters, H. J. & Daiker, K. C. (1982). Graphics and animation as
    Instructional tools. Pipeline, 7 , 11-13.
    Park, O. C. & Hopkins, R. (1993). Instructional conditions for using
    dynamic visual displays. Instructional Science, 21, 427-449.
    Psillos, D., & Méheut, M. (2001). Teaching-learning sequences as a means
    for linking research to development. Paper presented at the
    Proceedings of the Third International Conference on Science
    Education Research in the Knowledge Based Society, Thessaloniki.
    Psillos, D., Koumaras, P. & Tiberghien, A. (1988). Voltage presented as
    a primary concept on DC circuits. International Journal of Science
    Education, 10(1),29-43.
    Psillos, D., Koumaras, P., & Valassiades, O. (1987). Students'
    representations of electric current before, during and after
    instruction on DC circuits. Journal of Research in Science and
    Technological Education, 5, 185-189.
    Park, O. C. & Gittelman, S. S. (1992). Selective Use of Animation and
    Feedback in Computer-Based Instruction. Educational Technology,
    Research and Development, 40(4), 27-38.
    Paivio, A. (1971).Imagery and verbal processes. New York: Holt,
    Rochowicz, J. J. (1996). The Impact of Using Computers and Calculators
    On Calculus Instruction: Various Perceptions. Journal of Computers
    In Mathematics and Science Teaching 15(4), 387-399.
    Roberts, D. L. & Stephens, L. J. (1999). The Effect of the Frequency of
    Usage of Computer Software in High School Geometry. Journal of
    Computers in Mathematics and Science Teaching. 18(1), 23-30.
    Rieber, L. P. (1990). Animation in computer based instruction. ETR&D,
    38(1), 77-86.
    Rieber, L. P., Boyce, M. J., & Assad, C. (1990). The effects of computer
    animation on adult learning and retrieval tasks. Journal of
    Computer-Based Instruction, 17(2), 46-52.
    Rigney, J. W. & et Lutz, K. A. (1976). Effect of graphic analogies of
    Concepts in chemistry on learning and attitude. Journal of
    Educational Psychology, 68 (3), 305-311.
    Rieber, L. P. (1989). A Review of Animation research in Computer-based
    Instruction. In Proceedings of Selected Research Papers presented
    At the Annual Meeting of the Association for Educational
    Communications and Technology. Dallas, Texas.
    Rieber, L. & Hannafin, M. (1988). The effects of textual and animated
    orienting activities and practice on learning from computer based
    instruction. Computers in the Schools, 5, 77-89.
    Rieber, L. P. (1990). Animation in computer based instruction. ETR&D,
    38(1), 77-86.
    R. (Ed.). Cognitive models of science: Minnesota studies in the philosophy
    of science (pp. 129–186). Minneapolis: University of Minnesota
    Press.
    Rinehart & Winston. National Council of Teachers of Mathematics. (1998).
    Principles and Standards for School Mathematics: Discussion Draft.
    Rohr, M., & Reimann, P. (1998). Reasoning with multiple representations
    when acquiring the particulate model of matter. In M. W. V. Someren,
    P. Reimann, H. P. A. Boshuizen & T.
    Schnotz, W. (2002) Towards an integrated view of learning from text and
    visual displays,Educational Psychology Review, 14 (1), pp. 101-120.
    Sales, G. C. & Williams, M. D. (1988). The effect of adaptive control of
    feedback in computer-based instruction. Journal of Research in
    Computing in Education, 21 (1), 97-111.
    Tyson, L. M., Venville, G. J., Harrison, A. G., & Treagust, D. F. (1997).
    A multidimensional framework for interpreting conceptual change
    events in the classroom. Science Education, 81, 387-404.
    Tytler, R. (1998). Children's conceptions of science education.
    International Journal of Science Education, 20(8), 929-958.New York :
    Vintage Books.
    Thiis, G. D. (1992). Evaluation of an introductory course on 'force'
    Considering students' preconceptions. Science Education, 76(2),
    155-174.
    Treagust, D. F. (1988). Development and use of diagnostic tests to
    evaluate students’ misconceptions in science. International
    Journal of Science Education, 10(2), 159-169.
    Treagust, D. F. (1995). Diagnostic assessment of students’ science
    knowledge. In S. M. Glynn, & R. Duit. (Eds.), Learning science in
    the schools: Research reforming practice, 327-346. New Jersey:
    Lawrence Erlbaum Associates.
    Treagust, D. F., Harrison, A., Venville, G., & Dagher, Z. (1996). Using
    an analogical teaching approach to engender conceptual change.
    International Journal of Science Education, 18, 213-229.
    Vosniadou, S., & Brewer, W. F. (1992). Mental models of the earth: A study
    Of conceptual change in childhood. Cognitive Psychology, 24, 535-585.
    Vosniadou, S. (1994). Capturing and modeling the process of conceptual
    Change [special issue]. Learning and Instruction, 4, 45-69.
    Vosniadou, S., & Brewer, W. F. (1992). Mental models of the earth: A study
    Of conceptual change in childhood. Cognitive Psychology, 24, 535-585.
    Vosniadou, S., & Ioannides, C. (1998). From conceptual development to
    Science education: A psychological point of view. International
    Journal of Science Education, 20(10), 1213-1230.
    Vosniadou, S., & Ioannides, C. (2001). Designing learning environments
    to promote conceptual change in science. Learning and Instruction.,
    11, 381-419.
    Vosniadou, S., Skopeliti, I., & Ikospentaki, K. (2004). Modes of knowing
    and ways of reasoning in elementary astronomy. Cognitive Development,
    19, 203-222
    W Schnotz, J Böckheler, H Grzondziel (1999)- European Journal of
    Psychology of Education, Individual and co-operative learning with
    interactive animated pictures
    White, R., & Gunstone, R. (1992). Probing understanding. London: Falmer
    Press.
    White, B. Y. & Frederiksen, J. R. (1990). Causal model progressions as
    a foundation for intelligent learning environments. Artificial
    Intelligence, 42, 99-157.
    Winn, B.(1987). Charts, graphs, and diagrams in educational materials.
    The Psychology of Illustration, Vol.1:Basic Research, 152-198.
    W,H.K., Krajcik, J. S., & Soloway, E. (2001). Promoting conceptual
    understanding of chemical representations: students' use of a
    visualization tool in the classroom. Journal of Research in Science
    Teaching, 38, 821-842

    QR CODE