簡易檢索 / 詳目顯示

研究生: 陳宥澄
Chan, Yau-Ching
論文名稱: 咖啡因增補對認知功能及10公里跑步表現的影響
Acute Effect of Caffeine Supplementation on Cognitive Function and 10-km Running Performance
指導教授: 王鶴森
Wang, Ho-Seng
口試委員: 陳勇志
Chen, Yung-Chih
王鶴森
Wang, Ho-Seng
黃崇儒
Huang, Chung-Ju
口試日期: 2023/01/18
學位類別: 碩士
Master
系所名稱: 體育與運動科學系
Department of Physical Education and Sport Sciences
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 51
中文關鍵詞: 增補劑反應時間抑制控制執行功能耐力運動
英文關鍵詞: ergogenic aids, reaction time, inhibitory control, executive function, endurance exercise
研究方法: 實驗設計法
DOI URL: http://doi.org/10.6345/NTNU202300353
論文種類: 學術論文
相關次數: 點閱:116下載:41
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 背景:過去已有統合分析指出運動對於認知功能具有正面的效果,同時也有研究指出咖啡因不但可以改善運動表現,也有助於提升認知功能,惟目前對於固定距離的最大努力運動結合咖啡因增補對認知功能之影響仍有待釐清。目的:探討咖啡因增補對認知功能及10公里跑步表現的影響。方法:招募10名健康男性,採雙盲、重覆量數且平衡次序方式進行兩次實驗處理,分別於增補每公斤體重6毫克咖啡因或安慰劑45分鐘後,進行10公里跑步計時測驗,且在咖啡因增補前、增補後40分鐘及跑步計時測驗結束後立即進行叫色測驗。結果:運動前增補咖啡因能顯著減短10公里跑步之完成時間 (咖啡因 vs. 安慰劑:49.03 ± 6.36 mins vs. 50.80 ± 7.40 mins)(p < .05),且運動過程中之心跳率及自覺努力程度與安慰劑處理間無顯著差異。在認知功能方面,增補咖啡因在運動後及增補後40分鐘顯著提升不一致情境中之正確率 (運動後 vs. 增補後 vs. 增補前:92.90 ± 6.44 % vs. 91.10 ± 7.37 % vs. 84.50 ± 9.34 %)(p < .05)。不論一致情境或不一致情境運動後之反應時間皆顯著低於增補後,增補後亦顯著低於增補前(一致性情境:454.53 ± 15.00 ms vs. 491.94 ± 17.71 ms vs. 515.78 ± 18.27 ms;不一致性情境:498.08 ± 22.02 ms vs. 529.80 ± 27.19 ms vs. 555.66 ± 27.92 ms) (p < .05),且增補咖啡因亦顯著降低不一致情境中之反應時間 (咖啡因 vs. 安慰劑:513.79 ± 27.31 ms vs. 541.91 ± 24.41 ms)(p < .05)。結論:增補咖啡因能有效提升10公里跑步計時測驗運動表現,且咖啡因可以提升不一致情境的正確率及縮短反應時間,但結合最大努力運動對正確率及反應時間並沒有加成的效果。

    Background: The previous meta-analysis has identified that exercise has a positive effect on cognitive function. Studies also found that caffeine not only can enhance physical performance but also improve cognitive function. However, the effect of fixed-distance maximal effort exercise combined with caffeine supplementation on cognitive function still unclear. Purpose: This study aimed to investigate the effect of caffeine supplementation on cognitive function and 10-km running time trial performance. Method: 10 healthy males were recruited. Before 45 minutes 10-km running time trial was performed, each participate were supplemented with either caffeine (6 mg/kg) or placebo in a double-blind, repeated and counterbalanced design. Stroop test was performed before supplementation, 40 minutes after supplementation, and immediately after the running. Results: Caffeine supplementation shorter the completion time of a 10-km running time trial (CAF vs. PLA: 49.03 ± 6.36 mins vs. 50.80 ± 7.40 mins)(p < .05), and there is no difference in heart rate and RPE between trials. In cognitive function, caffeine supplementation improves accuracy in incongruent conditions after exercise (post-ex vs. post-s vs. pre-s: 92.90 ± 6.44 % vs. 91.10 ± 7.37 % vs. 84.50 ± 9.34 %)(p < .05). Regardless of the congruent or incongruent condition, the reaction time after exercise is significantly faster than post-supplementation, and post-supplementation significantly faster than pre-supplementation (congruent condition: 454.53 ± 15.00 ms vs. 491.94 ± 17.71 ms vs. 515.78 ± 18.27 ms; incongruent condition: 498.08 ± 22.02 ms vs. 529.80 ± 27.19 ms vs. 555.66 ± 27.92 ms) (p < .05), and caffeine supplementation also reduces reaction times in incongruent condition (CAF vs. PLA: 513.79 ± 27.31 ms vs. 541.91 ± 24.41 ms)(p < .05). Conclusion: Caffeine not only improves 10-km running time trial performance but also improves the accuracy and shorten the reaction time of incongruent condition. However, combined with maximum effort exercise has no synergistic effect on the accuracy and reaction time.

    第壹章 緒論 1 第一節 研究背景 1 第二節 研究目的 3 第三節 研究假設 3 第四節 操作性名詞定義解釋 3 第五節 研究範圍與限制 4 第貳章 文獻探討 5 第一節 單次運動對認知功能之影響 5 第二節 咖啡因對有氧運動表現之影響 7 第三節 咖啡因對認知功能之影響 8 第四節 運動結合咖啡因增補對認知功能之影響 10 第五節 本章總結 15 第參章 研究方法與步驟 16 第一節 研究參與者 16 第二節 實驗時間與地點 16 第三節 實驗流程 16 第四節 實驗方法與步驟 19 第五節 資料處理與分析 22 第肆章 結果 24 第一節 研究參與者基本資料 24 第二節 咖啡因增補對10公里跑步測驗的影響 24 第三節 咖啡因增補結合10公里跑步測驗對認知功能的影響 28 第伍章 討論與建議 32 第一節 咖啡因增補對10公里跑步測驗的影響 32 第二節 咖啡因增補結合10公里跑步測驗對認知功能的影響 34 第三節 結論 37 參考文獻 38 附錄 47 附錄一 研究參與者知情同意書 47 附錄二 參與者健康問卷調查表 50 附錄三 飲食與運動紀錄表 51

    王俊智、宋岱芬、祝堅恆、張育愷 (2016),健身運動與認知功能:大腦神經滋養因子調節機制之探討。應用心理研究,64,95-134。
    教育部體育署 (2021),110年運動統計。https://www.sa.gov.tw/Resource/Ebook/637710365422845355.pdf
    Aguilar-Navarro, M., Muñoz, G., Salinero, J. J., Muñoz-Guerra, J., Fernández-Álvarez, M., Plata, M. d. M., & Del Coso, J. (2019). Urine Caffeine Concentration in Doping Control Samples from 2004 to 2015. Nutrients, 11(2), 286. https://www.mdpi.com/2072-6643/11/2/286
    Ali, A., O’Donnell, J., Starck, C., & Rutherfurd-Markwick, K. (2015). The effect of caffeine ingestion during evening exercise on subsequent sleep quality in females. Int J Sports Med, 36(6), 433-439.
    Ali, A., O’Donnell, J., Von Hurst, P., Foskett, A., Holland, S., Starck, C., & Rutherfurd-Markwick, K. (2016, 2016/02/16). Caffeine ingestion enhances perceptual responses during intermittent exercise in female team-game players. Journal of Sports Sciences, 34(4), 330-341. https://doi.org/10.1080/02640414.2015.1052746
    Arnsten, A. F. T. (2009, 2009/06/01). Stress signalling pathways that impair prefrontal cortex structure and function. Nature Reviews Neuroscience, 10(6), 410-422. https://doi.org/10.1038/nrn2648
    Beedie, C. J., Stuart, E. M., Coleman, D. A., & Foad, A. J. (2006, Dec). Placebo effects of caffeine on cycling performance. Med Sci Sports Exerc, 38(12), 2159-2164. https://doi.org/10.1249/01.mss.0000233805.56315.a9
    Benjamim, C. J. R., Kliszczewicz, B., Garner, D. M., Cavalcante, T. C. F., da Silva, A. A. M., Santana, M. D. R., & Valenti, V. E. (2020, 2020/08/17). Is Caffeine Recommended Before Exercise? A Systematic Review To Investigate Its Impact On Cardiac Autonomic Control Via Heart Rate And Its Variability. Journal of the American College of Nutrition, 39(6), 563-573. https://doi.org/10.1080/07315724.2019.1705201
    Bento-Torres, J., Bento-Torres, N. V. O., Stillman, C. M., Grove, G. A., Huang, H., Uyar, F., Watt, J. C., Wollam, M. E., & Erickson, K. I. (2019, 2019/07/01/). Associations between cardiorespiratory fitness, physical activity, intraindividual variability in behavior, and cingulate cortex in younger adults. Journal of Sport and Health Science, 8(4), 315-324. https://doi.org/https://doi.org/10.1016/j.jshs.2019.03.004
    Bridge, C. A., & Jones, M. A. (2006, 2006/04/01). The effect of caffeine ingestion on 8 km run performance in a field setting. Journal of Sports Sciences, 24(4), 433-439. https://doi.org/10.1080/02640410500231496
    Browne, S. E., Flynn, M. J., O’Neill, B. V., Howatson, G., Bell, P. G., & Haskell-Ramsay, C. F. (2017). Chapter 9 - Effects of acute high-intensity exercise on cognitive performance in trained individuals: A systematic review. In M. R. Wilson, V. Walsh, & B. Parkin (Eds.), Progress in Brain Research (Vol. 234, pp. 161-187). Elsevier. https://doi.org/https://doi.org/10.1016/bs.pbr.2017.06.003
    Brunyé, T. T., Mahoney, C. R., Lieberman, H. R., & Taylor, H. A. (2010, 2010/03/01/). Caffeine modulates attention network function. Brain and Cognition, 72(2), 181-188. https://doi.org/https://doi.org/10.1016/j.bandc.2009.07.013
    Budde, H., Brunelli, A., Machado, S., Velasques, B., Ribeiro, P., Arias-Carrión, O., & Voelcker-Rehage, C. (2012, 2012/02/01/). Intermittent Maximal Exercise Improves Attentional Performance Only in Physically Active Students. Archives of Medical Research, 43(2), 125-131. https://doi.org/https://doi.org/10.1016/j.arcmed.2012.02.005
    Carr, A., Dawson, B., Schneiker, K., Goodman, C., & Lay, B. (2008). Effect of caffeine supplementation on repeated sprint running performance. Journal of sports medicine and physical fitness, 48(4), 472.
    Chang, Y.-K., Alderman, B. L., Chu, C.-H., Wang, C.-C., Song, T.-F., & Chen, F.-T. (2017, 2017/02/01). Acute exercise has a general facilitative effect on cognitive function: A combined ERP temporal dynamics and BDNF study [https://doi.org/10.1111/psyp.12784]. Psychophysiology, 54(2), 289-300. https://doi.org/https://doi.org/10.1111/psyp.12784
    Chang, Y. K., Labban, J. D., Gapin, J. I., & Etnier, J. L. (2012, 2012/05/09/). The effects of acute exercise on cognitive performance: A meta-analysis. Brain Research, 1453, 87-101. https://doi.org/https://doi.org/10.1016/j.brainres.2012.02.068
    Connell, C. J., Thompson, B., Kuhn, G., & Gant, N. (2016). Exercise-induced fatigue and caffeine supplementation affect psychomotor performance but not covert visuo-spatial attention. PLoS one, 11(10), e0165318.
    Davey, C. P. (1973, 1973/09/01). Physical Exertion and Mental Performance. Ergonomics, 16(5), 595-599. https://doi.org/10.1080/00140137308924550
    Davis, J. M., Zhao, Z., Stock, H. S., Mehl, K. A., Buggy, J., & Hand, G. A. (2003, 2003/02/01). Central nervous system effects of caffeine and adenosine on fatigue. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 284(2), R399-R404. https://doi.org/10.1152/ajpregu.00386.2002
    Desbrow, B., Biddulph, C., Devlin, B., Grant, G. D., Anoopkumar-Dukie, S., & Leveritt, M. D. (2012, 2012/01/01). The effects of different doses of caffeine on endurance cycling time trial performance. Journal of Sports Sciences, 30(2), 115-120. https://doi.org/10.1080/02640414.2011.632431
    Diamond, A. (2013). Executive functions. Annual review of psychology, 64, 135.
    Diamond, D. M., Campbell, A. M., Park, C. R., Halonen, J., & Zoladz, P. R. (2007). The temporal dynamics model of emotional memory processing: a synthesis on the neurobiological basis of stress-induced amnesia, flashbulb and traumatic memories, and the Yerkes-Dodson law. Neural plasticity, 2007.
    Doherty, M., & Smith, P. M. (2005, 2005/04/01). Effects of caffeine ingestion on rating of perceived exertion during and after exercise: a meta-analysis [https://doi.org/10.1111/j.1600-0838.2005.00445.x]. Scandinavian Journal of Medicine & Science in Sports, 15(2), 69-78. https://doi.org/https://doi.org/10.1111/j.1600-0838.2005.00445.x
    Duncan, M. J., Dobell, A. P., Caygill, C. L., Eyre, E., & Tallis, J. (2019, 2019/01/02). The effect of acute caffeine ingestion on upper body anaerobic exercise and cognitive performance. European Journal of Sport Science, 19(1), 103-111. https://doi.org/10.1080/17461391.2018.1508505
    Einöther, S. J. L., & Giesbrecht, T. (2013, 2013/01/01). Caffeine as an attention enhancer: reviewing existing assumptions. Psychopharmacology, 225(2), 251-274. https://doi.org/10.1007/s00213-012-2917-4
    Fan, J., Flombaum, J. I., McCandliss, B. D., Thomas, K. M., & Posner, M. I. (2003, 2003/01/01/). Cognitive and Brain Consequences of Conflict. NeuroImage, 18(1), 42-57. https://doi.org/https://doi.org/10.1006/nimg.2002.1319
    Fan, J., McCandliss, B. D., Fossella, J., Flombaum, J. I., & Posner, M. I. (2005, 2005/06/01/). The activation of attentional networks. NeuroImage, 26(2), 471-479. https://doi.org/https://doi.org/10.1016/j.neuroimage.2005.02.004
    Figueiredo, N., Queiroz, M., Felício, F. P., Ferreira, J., Gerosa-Neto, J., Mota, J. F., da Silva, C. R., Ghedini, P. C., Saunders, B., & Pimentel, G. D. (2021, 2021/04/01/). Acute caffeine mouth rinsing does not improve 10-km running performance in CYP1A2 C-allele carriers. Clinical Nutrition ESPEN, 42, 93-97. https://doi.org/https://doi.org/10.1016/j.clnesp.2021.02.012
    Fisone, G., Borgkvist, A., & Usiello, A. (2004, 2004/04/01). Caffeine as a psychomotor stimulant: mechanism of action. Cellular and Molecular Life Sciences CMLS, 61(7), 857-872. https://doi.org/10.1007/s00018-003-3269-3
    Funahashi, S. (2001, 03/01). Neuronal mechanisms of executive control by the prefrontal cortex. Neuroscience research, 39, 147-165. https://doi.org/10.1016/S0168-0102(00)00224-8
    Glaister, M., & Moir, G. (2019, 2019/06/01). Effects of Caffeine on Time Trial Performance and Associated Physiological Responses: A Meta-Analysis. Journal of Caffeine and Adenosine Research, 9(2), 40-52. https://doi.org/10.1089/caff.2019.0003
    Glaister, M., Pattison, J. R., Muniz-Pumares, D., Patterson, S. D., & Foley, P. (2015). Effects of Dietary Nitrate, Caffeine, and Their Combination on 20-km Cycling Time Trial Performance. The Journal of Strength & Conditioning Research, 29(1). https://journals.lww.com/nsca-jscr/Fulltext/2015/01000/Effects_of_Dietary_Nitrate,_Caffeine,_and_Their.21.aspx
    Goldstein, E. R., Ziegenfuss, T., Kalman, D., Kreider, R., Campbell, B., Wilborn, C., Taylor, L., Willoughby, D., Stout, J., Graves, B. S., Wildman, R., Ivy, J. L., Spano, M., Smith, A. E., & Antonio, J. (2010, 2010/01/27). International society of sports nutrition position stand: caffeine and performance. Journal of the International Society of Sports Nutrition, 7(1), 5. https://doi.org/10.1186/1550-2783-7-5
    Graham, T. E. (2001, 2001/09/01). Caffeine and Exercise. Sports medicine, 31(11), 785-807. https://doi.org/10.2165/00007256-200131110-00002
    Green, P. J., Kirby, R., & Suls, J. (1996). The effects of caffeine on blood pressure and heart rate: A review1. Annals of Behavioral Medicine, 18(3), 201-216. https://doi.org/10.1007/bf02883398
    Grgic, J. (2018, 2018/02/07). Caffeine ingestion enhances Wingate performance: a meta-analysis. European Journal of Sport Science, 18(2), 219-225. https://doi.org/10.1080/17461391.2017.1394371
    Grgic, J., Mikulic, P., Schoenfeld, B. J., Bishop, D. J., & Pedisic, Z. (2019, 2019/01/01). The Influence of Caffeine Supplementation on Resistance Exercise: A Review. Sports medicine, 49(1), 17-30. https://doi.org/10.1007/s40279-018-0997-y
    Grgic, J., Trexler, E. T., Lazinica, B., & Pedisic, Z. (2018, 2018/03/05). Effects of caffeine intake on muscle strength and power: a systematic review and meta-analysis. Journal of the International Society of Sports Nutrition, 15(1), 11. https://doi.org/10.1186/s12970-018-0216-0
    Griffin, É. W., Mullally, S., Foley, C., Warmington, S. A., O'Mara, S. M., & Kelly, Á. M. (2011, 2011/10/24/). Aerobic exercise improves hippocampal function and increases BDNF in the serum of young adult males. Physiology & Behavior, 104(5), 934-941. https://doi.org/https://doi.org/10.1016/j.physbeh.2011.06.005
    Hanson, N. J., Martinez, S. C., Byl, E. N., Maceri, R. M., & Miller, M. G. (2019). Increased rate of heat storage, and no performance benefits, with caffeine ingestion before a 10-km run in hot, humid conditions. International journal of sports physiology and performance, 14(2), 196-202.
    Hogervorst, E., Bandelow, S., Schmitt, J., Jentjens, R., Oliveira, M., Allgrove, J., Carter, T., & Gleeson, M. (2008). Caffeine improves physical and cognitive performance during exhaustive exercise. Medicine & Science in Sports & Exercise, 40(10), 1841-1851.
    Hogervorst, E., Riedel, W., Jeukendrup, A., & Jolles, J. (1996, 1996/10/01). Cognitive Performance after Strenuous Physical Exercise. Perceptual and Motor Skills, 83(2), 479-488. https://doi.org/10.2466/pms.1996.83.2.479
    Hogervorst, E., Riedel, W., Kovacs, E., Brouns, F., & Jolles, J. (1999, 09/01). Caffeine Improves Cognitive Performance After Strenuous Physical Exercise. International journal of sports medicine, 20, 354-361. https://doi.org/10.1055/s-2007-971144
    Hsieh, S.-S., Huang, C.-J., Wu, C.-T., Chang, Y.-K., & Hung, T.-M. (2018). Acute Exercise Facilitates the N450 Inhibition Marker and P3 Attention Marker during Stroop Test in Young and Older Adults. Journal of Clinical Medicine, 7(11), 391. https://www.mdpi.com/2077-0383/7/11/391
    Kamijo, K., Nishihira, Y., Hatta, A., Kaneda, T., Wasaka, T., Kida, T., & Kuroiwa, K. (2004, 2004/07/01). Differential influences of exercise intensity on information processing in the central nervous system. European journal of applied physiology, 92(3), 305-311. https://doi.org/10.1007/s00421-004-1097-2
    Karayigit, R., Naderi, A., Akca, F., Cruz, C. J. G. d., Sarshin, A., Yasli, B. C., Ersoz, G., & Kaviani, M. (2021). Effects of Different Doses of Caffeinated Coffee on Muscular Endurance, Cognitive Performance, and Cardiac Autonomic Modulation in Caffeine Naive Female Athletes. Nutrients, 13(1), 2. https://www.mdpi.com/2072-6643/13/1/2
    Kevin De, P., Bart, R., Jeroen Van, C., Lieselot, D., Angelica, V., Kim, T., Robert, B. L., Andres, E. C., & Romain, M. (2017, 01 Oct. 2017). Do Glucose and Caffeine Nasal Sprays Influence Exercise or Cognitive Performance? International journal of sports physiology and performance, 12(9), 1186-1191. https://doi.org/10.1123/ijspp.2016-0598 10.1123/ijspp.2016-0598 10.1123/ijspp.2016-0598 10.1123/ijspp.2016-0598
    Koppelstaetter, F., Poeppel, T. D., Siedentopf, C. M., Ischebeck, A., Verius, M., Haala, I., Mottaghy, F. M., Rhomberg, P., Golaszewski, S., Gotwald, T., Lorenz, I. H., Kolbitsch, C., Felber, S., & Krause, B. J. (2008, 2008/01/01/). Does caffeine modulate verbal working memory processes? An fMRI study. NeuroImage, 39(1), 492-499. https://doi.org/https://doi.org/10.1016/j.neuroimage.2007.08.037
    Laura, P., Jeanick, B., Arnaud, H., & Karen, D. (2019, 01 May. 2019). Effects of Carbohydrate, Caffeine, and Guarana on Cognitive Performance, Perceived Exertion, and Shooting Performance in High-Level Athletes. International journal of sports physiology and performance, 14(5), 576-582. https://doi.org/10.1123/ijspp.2017-0865 10.1123/ijspp.2017-0865 10.1123/ijspp.2017-0865 10.1123/ijspp.2017-0865
    Machado, S., Sá Filho, A. S., Campos, C., de Paula, C. C., Bernardes, F., Murillo-Rodriguez, E., Maranhão Neto, G. A., & Lattari, E. (2020, 2020/06/01/). Can caffeine intake combined with aerobic exercise lead to improvement in attentional and psychomotor performance in trained individuals? IBRO Reports, 8, 76-81. https://doi.org/https://doi.org/10.1016/j.ibror.2020.01.002
    Magkos, F., & Kavouras, S. A. (2005). Caffeine use in sports, pharmacokinetics in man, and cellular mechanisms of action. Critical Reviews in Food Science and Nutrition, 45(7-8), 535-562.
    McConnell, T. R. (1988). Practical Considerations in the Testing of V̇ 2 max in Runners. Sports medicine, 5(1), 57-68.
    McLellan, T. M., Caldwell, J. A., & Lieberman, H. R. (2016, 2016/12/01/). A review of caffeine’s effects on cognitive, physical and occupational performance. Neuroscience & Biobehavioral Reviews, 71, 294-312. https://doi.org/https://doi.org/10.1016/j.neubiorev.2016.09.001
    McMorris, T., & Hale, B. J. (2012, 2012/12/01/). Differential effects of differing intensities of acute exercise on speed and accuracy of cognition: A meta-analytical investigation. Brain and Cognition, 80(3), 338-351. https://doi.org/https://doi.org/10.1016/j.bandc.2012.09.001
    McMorris, T., Hale, B. J., Corbett, J., Robertson, K., & Hodgson, C. I. (2015, 2015/03/15/). Does acute exercise affect the performance of whole-body, psychomotor skills in an inverted-U fashion? A meta-analytic investigation. Physiology & Behavior, 141, 180-189. https://doi.org/https://doi.org/10.1016/j.physbeh.2015.01.010
    Moriarty, T. A., Mermier, C., Kravitz, L., Gibson, A., Beltz, N., & Zuhl, M. (2019). Acute aerobic exercise based cognitive and motor priming: practical applications and mechanisms. Frontiers in psychology, 10, 2790.
    O’Rourke, M. P., O’Brien, B. J., Knez, W. L., & Paton, C. D. (2008, 2008/04/01/). Caffeine has a small effect on 5-km running performance of well-trained and recreational runners. Journal of Science and Medicine in Sport, 11(2), 231-233. https://doi.org/https://doi.org/10.1016/j.jsams.2006.12.118
    Pickering, C., & Kiely, J. (2019, 2019/06/01). What Should We Do About Habitual Caffeine Use in Athletes? Sports medicine, 49(6), 833-842. https://doi.org/10.1007/s40279-018-0980-7
    Piepmeier, A. T., & Etnier, J. L. (2015, 2015/03/01/). Brain-derived neurotrophic factor (BDNF) as a potential mechanism of the effects of acute exercise on cognitive performance. Journal of Sport and Health Science, 4(1), 14-23. https://doi.org/https://doi.org/10.1016/j.jshs.2014.11.001
    Rogers, P. J., Heatherley, S. V., Mullings, E. L., & Smith, J. E. (2013, 2013/03/01). Faster but not smarter: effects of caffeine and caffeine withdrawal on alertness and performance. Psychopharmacology, 226(2), 229-240. https://doi.org/10.1007/s00213-012-2889-4
    Salinero, J. J., Lara, B., & Del Coso, J. (2019, 2019/04/03). Effects of acute ingestion of caffeine on team sports performance: a systematic review and meta-analysis. Research in Sports Medicine, 27(2), 238-256. https://doi.org/10.1080/15438627.2018.1552146
    Smit, H. J., & Rogers, P. J. (2000, 2000/10/01). Effects of low doses of caffeine on cognitive performance, mood and thirst in low and higher caffeine consumers. Psychopharmacology, 152(2), 167-173. https://doi.org/10.1007/s002130000506
    Southward, K., Rutherfurd-Markwick, K. J., & Ali, A. (2018, 2018/10/01). Correction to: The Effect of Acute Caffeine Ingestion on Endurance Performance: A Systematic Review and Meta-Analysis. Sports medicine, 48(10), 2425-2441. https://doi.org/10.1007/s40279-018-0967-4
    Takahashi, S., & Grove, P. M. (2020, 2020-December-07). Use of Stroop Test for Sports Psychology Study: Cross-Over Design Research [Original Research]. Frontiers in psychology, 11. https://doi.org/10.3389/fpsyg.2020.614038
    Tanaka, H., Monahan, K. D., & Seals, D. R. (2001). Age-predicted maximal heart rate revisited. Journal of the american college of cardiology, 37(1), 153-156.
    Tarnopolsky, M. A. (2008, 2008/12/01). Effect of caffeine on the neuromuscular system — potential as an ergogenic aid. Applied Physiology, Nutrition, and Metabolism, 33(6), 1284-1289. https://doi.org/10.1139/H08-121
    Tieges, Z., Snel, J., Kok, A., & Richard Ridderinkhof, K. (2009, 2009/03/01/). Caffeine does not modulate inhibitory control. Brain and Cognition, 69(2), 316-327. https://doi.org/https://doi.org/10.1016/j.bandc.2008.08.001
    Wang, C., Zhu, Y., Dong, C., Zhou, Z., & Zheng, X. (2020). Effects of Various Doses of Caffeine Ingestion on Intermittent Exercise Performance and Cognition. Brain Sciences, 10(9), 595. https://www.mdpi.com/2076-3425/10/9/595
    Wilke, J., Giesche, F., Klier, K., Vogt, L., Herrmann, E., & Banzer, W. (2019, 2019/06/01). Acute Effects of Resistance Exercise on Cognitive Function in Healthy Adults: A Systematic Review with Multilevel Meta-Analysis. Sports medicine, 49(6), 905-916. https://doi.org/10.1007/s40279-019-01085-x
    Womack, C. J., Saunders, M. J., Bechtel, M. K., Bolton, D. J., Martin, M., Luden, N. D., Dunham, W., & Hancock, M. (2012, 2012/02/06). The influence of a CYP1A2 polymorphism on the ergogenic effects of caffeine. Journal of the International Society of Sports Nutrition, 9(1), 7. https://doi.org/10.1186/1550-2783-9-7
    Yang, A., Palmer, A. A., & de Wit, H. (2010, 2010/08/01). Genetics of caffeine consumption and responses to caffeine. Psychopharmacology, 211(3), 245-257. https://doi.org/10.1007/s00213-010-1900-1
    Zhang, B., Liu, Y., Wang, X., Deng, Y., & Zheng, X. (2020). Cognition and brain activation in response to various doses of caffeine: A near-infrared spectroscopy study. Frontiers in psychology, 11, 1393.
    Zimmer, P., Stritt, C., Bloch, W., Schmidt, F.-P., Hübner, S. T., Binnebößel, S., Schenk, A., & Oberste, M. (2016, 2016/10/01). The effects of different aerobic exercise intensities on serum serotonin concentrations and their association with Stroop task performance: a randomized controlled trial. European journal of applied physiology, 116(10), 2025-2034. https://doi.org/10.1007/s00421-016-3456-1

    下載圖示
    QR CODE