簡易檢索 / 詳目顯示

研究生: 洪慈憶
C. Y. Hong
論文名稱: 微波介電材料鈦酸鑭-鋁酸鑭 (摻雜錳) 之光譜性質研究
Optical properities of (1-x)La2/3TiO3-xLaAlO3 (Mn doping)
指導教授: 劉祥麟
Liu, Hsiang-Lin
學位類別: 碩士
Master
系所名稱: 物理學系
Department of Physics
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 142
中文關鍵詞: 微波介電材料
論文種類: 學術論文
相關次數: 點閱:149下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

我們研究 (i) 不同冷卻速率之 La2/3TiO3-LaAlO3;(ii) 180 C°/h 冷卻速率依不同成份比例之La2/3TiO3-LaAlO3;(iii) 摻雜不同濃度 Mn2O3 之 La2/3TiO3-LaAlO3 系列的光譜性質與其微波特性的關聯。

首先,不同冷卻速率之 (1-x)La2/3TiO3-xLaAlO3-0.25wt% Mn2O3 的系列樣品顯示:(i) x = 0.2 之 x 光繞射能譜有雜相的存在,隨著冷卻速率的增加,雜相逐漸減少且分析對應於 (4 0 0) 的 47° 峰值之半高寬有減小的趨勢;(ii) 隨著冷卻速率的減少,x = 0.1 與 0.4 之拉曼活性振動模的半高寬隨之減少,表示晶格同調性提升與品質因子呈正比關係;(iii) 在 x = 0.1、0.2 和 0.4 這三系列樣品中,紅外光光譜實驗得到的高頻介電常數較微波低頻介電常數小,我們推測低頻介電常數有非本質的貢獻,而非本質緣由於樣品的晶格缺陷和雜相。

隨著 LaAlO3 含量的增加,在冷卻速率皆為 180 C°/h 之 (1-x)La2/3TiO3-xLaAlO3-0.25wt% Mn2O3 的樣品展現:(i) x 光繞射能譜的峰值會往高角度移動,且結構扭曲會增加;(ii) 介電常數有減小的趨勢,因 Al3+ 離子半徑 (0.535 Å) 較 Ti4+ 離子半徑 (0.605 Å) 小,整體晶格常數減小,極化率變小;(iii) x = 0.6 品質因子有最大值,可能是 LaAlO3 有較高的品質因子。最後,0.6La2/3TiO3-0.4LaAlO3 添加 Mn2O3 可提高品質因子,除了摻雜 0.25 wt% Mn2O3 之外,隨著 Mn2O3 含量減少,拉曼活性振動模的半高寬隨之減少,表示晶格同調性提升。

We present the results of Raman-scattering and infrared reflectivity measurements of (1-x)La2/3TiO3-xLaAlO3 with different cooling rate and different concentration of Mn2O3 addition in these materials. Our goal is to understand the correlation between their optical response characteristics and microwave properties.
The x-ray powder diffraction spectrum of 0.8La2/3TiO3- 0.2LaAlO3-0.25 wt% Mn2O3 shows the secondary phase. With increasing cooling rate, the secondary phase gradually vanishes while the linewidth of the (4 0 0) diffraction peak becomes narrower. Furthermore, the Raman-active modes in x = 0.1 and 0.4 with a slower cooling rate possess smaller resonance linewidth, which corresponds to a more coherent lattice vibration and a higher Q × f factor. Additionally, the dielectric constants in x = 0.1, 0.2, and 0.4 determined from the infrared spectra are smaller than those taken in the microwave frequency region.
Since the ionic radius of Al3+ (0.535 Å) is smaller than that of Ti4+ (0.605 Å), the c-axis lattice parameter is decreasing in (1-x)La2/3TiO3-xLaAlO3-0.25 wt% Mn2O3 with cooling rate of 180 C°/h as the concentration of LaAlO3 increases, and, thereby decreases the values of dielectric constants. Given that x = 0.6 has the highest Q × f factor. The effect of Mn2O3 addition can also improve the Q × f factor.

中文摘要 i 英文摘要 ii 目錄 iii 圖目錄 v 表目錄 xiv 第一章 緒論 1 第二章 研究背景 6 2-1 微波介電材料 6 2-2 文獻回顧 8 第三章 實驗儀器設備及基本原理 18 3-1 光譜儀系統 18 3-2 光譜分析原理介紹 21 第四章 實驗樣品特性 31 4-1 樣品製程 31 4-2 樣品結構 32 第五章 實驗結果與討論 42 5-1 不同冷卻速率的 La2/3TiO3-LaAlO3 之光譜研究 42 5-1-1 0.9La2/3TiO3-0.1LaAlO3 42 5-1-2 0.8La2/3TiO3-0.2LaAlO3 49 5-1-3 0.6La2/3TiO3-0.4LaAlO3 52 5-2 180 C°/h 冷卻速率之不同成份比例La2/3TiO3-LaAlO3之光譜研究 54 5-3 摻雜不同濃度 Mn2O3 的 0.6La2/3TiO3-0.4LaAlO3 之光譜研究 57 第六章 結論與未來展望 137 參考文獻 140

[1] S. B. Cohn, “Microwave bandpass filters containing high Q dielectric resonators”, IEEE TMTT MTT-16, 218-227 (1968).
[2] H. Ohsato, T. Tsunooka, A. Kan, Y. Ohishi, Y. Miyauchi, and Y. Tohdo “Microwave-millimeterwave dielectric materials”, Key Eng. Mater. 269, 195 (2004).
[3] 電子材料專輯,電子月刊第十一卷第四期四月刊 (2005)。
[4] 翁敏航、楊茹媛、李義傑,高介電材料之微波特性量測(一),奈米通訊第十一卷第一期二月刊 (2004)。
[5] W. Wersing, “Microwave ceramics for resonators and filters”, Current Opinion in Solid State and Materials Science 1, 715 (1996).
[6] D. Suvorov, M. Valant, S. Skapin, and D. Kolar, “Microwave dielectric properties of ceramics with compositions along the La2/3TiO3-LaAlO3”, J. Mater. Sci. 33, 85-89 (1998).
[7] G. Burns, Solid State Physics, Academic Press. (1985).
[8] M. D. Kingery and H. K. Barsoum, Fundamental of Ceramics, The McGraw-Hill Companies Inc. 526 (1997).
[9] I. M. Reaney and D. Iddles “Microwave dielectric ceramics for resonators and filters in mobile phone networks”, J. Am. Ceram. Soc. 89[7], 2063 - 2072 (2006).
[10] D. Skapin, D. Kolar, and D. Suvorov, “Phase stability and equilibria in the La2O3-TiO2 system”, J. Eur. Ceram. Soc. 20, 1179-1185 (2000).
[11] J. H. Moon, H. S. Park, K. T. Lee, J. H. Choi, and D. H. Yeo, “Microwave dielectric properties of the (1-x)La2/3TiO3-xLaAlO3 system”, J. J. A. P. 36, 6814-6817 (1997).
[12] 翁士民,高溫超導銅氧化物 Y1-xCaxBa2Cu3Oy 和 Y1-xPrxBa2Cu4O8 之光譜研究,國立臺灣師範大學物理研究所碩士論文,93 年 6 月。
[13] Douglas A. Skoog and James J. Leary著,林敬二、林宗義審譯,儀器分析,美亞書版股份有限公司,1971 第四版上冊。
[14] 毛光興,儀器分析,幼獅文化事業公司,中華民國六十九年七月第二版。
[15] 李冠卿,近代光學,聯經出版社,中華民國七十七年九月初版。
[16] 林植南,微波介電材料 La2/3TiO3-LaAlO3 聲子計算:密度泛函微擾理論之研究,98 年 6 月。
[17] M. Chen, D. B. Tanner, and J. C. Nino, “ Infrared study of the phonon modes in bismuth pyrochlores”, Phys. Rev. B 72, 054303 (2005).
[18] J. Petzelt, E. Buixaderas, G. Komandin, A.V. Pronin, and D. Suvorov, “Infrared dielectric response of the La2/3TiO3–LaAlO3 microwave ceramics system”, Mater. Sci. Eng. B 57, 40 - 45 (1998).
[19] Wenjin Wang, “ La2/3TiO3 and Li1/2Nd1/2TiO3 based microwave dielectric ceramics”, (2008).
[20] W. G. Spitzer, R. C. Miller, D. A. Kleinman, and L. E. Howarth, “Far infrared dielectric dispersion in BaTiO3, SrTiO3, and TiO2”, Phys. Rev. 126, 1710 (1962).
[21] G. Santosh Babu, V. Subramanian, and V. R. K. Murthy, “Far-infrared, Raman spectroscopy, and microwave dielectric properties of La(Mg0.5Ti(0.5−x)Snx)O3 ceramics”, J. Appl. Phys. 102, 064906 (2007).
[22] Hwack Joo Lee and Hyun Min Park, “Microstructure Characterization of the (1-x)La2/3TiO3•xLaAlO3 System”, J. Am. Ceram. Soc. 86[8], 1395 - 1400 (2003).
[23] Masanori Abe and Kenji Uchino, “X-ray study of the deficient perovskite La2/3TiO3”, Mat. Res. Bull. Vol. 9, 147-156 (1974).
[24] Sreco Skapin, Drago Kolar, and Danilo Suvorov, “X-ray diffraction and microstructural investigation of the Al2O3-La2O3-TiO2 System”, J. Am. Ceram. Soc. 76[9], 2359 - 2362 (1993).
[25] Feridoon Azough, Wenjin Wang and Robert Freer, “The crystal structure of LaAlO3-stabilized La2/3TiO3 ceramics:An HRTEM investigation”, J. Am. Ceram. Soc. 92[9], 2093 - 2098 (2009).
[26] Feridoon Azough and Robert Freer, “Direct observation of A-site vacancies and a twin boundary structure in La2/3TiO3-based ceramics using HAADF/STEM”, J. Am. Ceram. Soc. 93[4], 1237 - 1240 (2010).

下載圖示
QR CODE