簡易檢索 / 詳目顯示

研究生: 蔡凱智
Tsai, Kai-Chih
論文名稱: 摻雜錳、銅之硒化鎘奈米團簇物及其在基板上自組裝形成二維奈米材料之探討
Doping of Mn and Cu into (CdSe)13 Nanoclusters and Self-Assembling in Confined Space
指導教授: 劉沂欣
Liu, Yi-Hsin
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 79
中文關鍵詞: 零維結構稀磁性半導體硒化鎘模板法半導體高分子中孔洞沸石材料
英文關鍵詞: 0D structure, diluted magnetic semiconductors, (CdSe)13, template, conductive polymer, mesoporous zeolite material
DOI URL: http://doi.org/10.6345/NTNU201901025
論文種類: 學術論文
相關次數: 點閱:107下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究第一部分優化先前魔術尺寸硒化鎘奈米團簇化合物[(CdSe)13]2之合成方式,利用摻雜金屬離子作磁光特性之改質,並探討以軟、硬模板來限制其維度生長。經由替換不同前驅物,以元素硒取代昂貴的硒脲作為合成奈米團簇化合物之來源,並藉由錳、銅離子的摻雜,對團簇化合物進行磁光特性的改質。透過元素分析儀、X光粉末繞射儀、紫外光-可見光光譜儀、電子順磁共振光譜儀、X光吸收光譜延伸區精細結構、DFT理論計算及磁圓偏振二色性光譜,以確認元素組成、繞射及電子結構、配位環境、未成對電子的存在及摻雜位置,並推論錳摻雜奈米團簇化合物之發光機制及磁光效應。
    本研究第二部分以共聚高分子作為軟模板、中孔洞沸石材料作為硬模板,來限制魔術尺寸硒化鎘奈米團簇化合物[(CdSe)13]2生長,並透過場發射掃描穿透式球差修正電子顯微鏡、X光粉末繞射儀、X光掠角散射的方式,以確認團簇化合物於基材上之排列位向及孔道內之生長,利於實現具有可調控性有序排列量子點超晶格之構想。

    The first part of the study is focused on optimization of [(CdSe)13]2 synthesis, metal-ion doping for luminescence, as well as confined growth via soft- and hard-template strategies. Inexpensive elemental selenium is employed to replace selenourea as alternative source for nanocluster synthesis, followed by doping of Mn and Cu for structural and optical modification. Compositions, structural characterizations electronic structures, chemical environment, unpaired electrons and dopant position were conducted via EA, XRD, UV-vis, EPR, EXAFS, DFT calculation and MCD, which confirm proposed mechanism of luminescence and magneto-optic effect.
    The second part of this study is aimed to self-assembly with conducting polymers as well as spatial confined growth of nanoclusters within nanopores of mesoporous zeolite nanoparticles (MZNs) and graphene-oxide derivatives (MGNs). Oriented and confined growths of nanoclusters, rationally characterized in HRTEM, XRD, GISAXS, are developed onto substrate platform which is in realization of quantum-dot superlattices and their tailored properties.

    謝誌 I 摘要 II Abstract III 目錄 IV 圖索引 VIII 表索引 XII 第一章 緒論 1 1.1 零維硒化鎘的發現及發展應用 1 1.2 以金屬離子摻雜硒化鎘之發展及應用 6 1.3 以模板法限制生長半導體材料 11 第二章 實驗方法 15 2.1 化學藥品 15 2.2 合成[(CdSe)13]2 雙生奈米團簇物 17 2.3 合成摻雜錳和銅之(CdSe)13 19 2.4 於基板上限制生長(CdSe)13 20 2.5 於中孔洞內限制生長(CdSe)13 20 2.6 樣品儀器鑑定 21 第三章 結果與討論 28 3.1 合成雙生(CdSe)13之探討 28 3.2 錳、銅摻雜之硒化鎘奈米團簇物 38 3.3 限制生長零維團簇物 56 第四章 結論與未來展望 72 第五章 參考文獻 73

    1. Wu, L.; Shi, C.; Tian, L.; Zhu, J., A One-Pot Method to Prepare Gold Nanoparticle Chains with Chitosan. J. Phys. Chem. C 2008, 112 (2), 319-323.
    2. Grebinski, J. W.; Hull, K. L.; Zhang, J.; Kosel, T. H.; Kuno, M., Solution-Based Straight and Branched CdSe Nanowires. Chem. Mater. 2004, 16 (25), 5260-5272.
    3. Pradhan, N.; Xu, H.; Peng, X., Colloidal CdSe Quantum Wires by Oriented Attachment. Nano Lett. 2006, 6 (4), 720-724.
    4. Ithurria, S.; Tessier, M. D.; Mahler, B.; Lobo, R. P. S. M.; Dubertret, B.; Efros, A. L., Colloidal nanoplatelets with two-dimensional electronic structure. Nat. Mater. 2011, 10, 936.
    5. Lhuillier, E.; Pedetti, S.; Ithurria, S.; Nadal, B.; Heuclin, H.; Dubertret, B., Two-Dimensional Colloidal Metal Chalcogenides Semiconductors: Synthesis, Spectroscopy, and Applications. Acc. Chem. Res. 2015, 48 (1), 22-30.
    6. Zhu, T.; Zhang, B.; Zhang, J.; Lu, J.; Fan, H.; Rowell, N.; Ripmeester, J. A.; Han, S.; Yu, K., Two-Step Nucleation of CdS Magic-Size Nanocluster MSC–311. Chem. Mater. 2017, 29 (13), 5727-5735.
    7. Wang, Y.; Liu, Y.-H.; Zhang, Y.; Kowalski, P. J.; Rohrs, H. W.; Buhro, W. E., Preparation of Primary Amine Derivatives of the Magic-Size Nanocluster (CdSe)13. Inorg. Chem. 2013, 52 (6), 2933-2938.
    8. Wang, Y.; Liu, Y.-H.; Zhang, Y.; Wang, F.; Kowalski, P. J.; Rohrs, H. W.; Loomis, R. A.; Gross, M. L.; Buhro, W. E., Isolation of the Magic-Size CdSe Nanoclusters [(CdSe)13(n-octylamine)13] and [(CdSe)13(oleylamine)13]. Angew. Chem. Int. Ed. 2012, 51 (25), 6154-6157.
    9. Hsieh, T.-E.; Yang, T.-W.; Hsieh, C.-Y.; Huang, S.-J.; Yeh, Y.-Q.; Chen, C.-H.; Li, E. Y.; Liu, Y.-H., Unraveling the Structure of Magic-Size (CdSe)13 Cluster Pairs. Chem. Mater. 2018, 30 (15), 5468-5477.
    10. Kudera, S.; Zanella, M.; Giannini, C.; Rizzo, A.; Li, Y.; Gigli, G.; Cingolani, R.; Ciccarella, G.; Spahl, W.; Parak, W. J.; Manna, L., Sequential Growth of Magic-Size CdSe Nanocrystals. Adv. Mater. 2007, 19 (4), 548-552.
    11. Liu, Y.-H.; Wang, F.; Wang, Y.; Gibbons, P. C.; Buhro, W. E., Lamellar Assembly of Cadmium Selenide Nanoclusters into Quantum Belts. J. Am. Chem. Soc. 2011, 133 (42), 17005-17013.
    12. Cossairt, B. M.; Owen, J. S., CdSe Clusters: At the Interface of Small Molecules and Quantum Dots. Chem. Mater. 2011, 23 (12), 3114-3119.
    13. Tang, Z.; Zhang, Z.; Wang, Y.; Glotzer, S. C.; Kotov, N. A., Self-Assembly of CdTe Nanocrystals into Free-Floating Sheets. Science 2006, 314 (5797), 274.
    14. Tang, Z.; Kotov, N. A.; Giersig, M., Spontaneous Organization of Single CdTe Nanoparticles into Luminescent Nanowires. Science 2002, 297 (5579), 237.
    15. Gary, D. C.; Terban, M. W.; Billinge, S. J. L.; Cossairt, B. M., Two-Step Nucleation and Growth of InP Quantum Dots via Magic-Sized Cluster Intermediates. Chem. Mater. 2015, 27 (4), 1432-1441.
    16. Wang, Y.; Zhang, Y.; Wang, F.; Giblin, D. E.; Hoy, J.; Rohrs, H. W.; Loomis, R. A.; Buhro, W. E., The Magic-Size Nanocluster (CdSe)34 as a Low-Temperature Nucleant for Cadmium Selenide Nanocrystals; Room-Temperature Growth of Crystalline Quantum Platelets. Chem. Mater. 2014, 26 (7), 2233-2243.
    17. Kasuya, A.; Sivamohan, R.; Barnakov, Y. A.; Dmitruk, I. M.; Nirasawa, T.; Romanyuk, V. R.; Kumar, V.; Mamykin, S. V.; Tohji, K.; Jeyadevan, B.; Shinoda, K.; Kudo, T.; Terasaki, O.; Liu, Z.; Belosludov, R. V.; Sundararajan, V.; Kawazoe, Y., Ultra-stable nanoparticles of CdSe revealed from mass spectrometry. Nat. Mater. 2004, 3 (2), 99-102.
    18. Riedinger, A.; Ott, F. D.; Mule, A.; Mazzotti, S.; Knüsel, P. N.; Kress, Stephan J. P.; Prins, F.; Erwin, S. C.; Norris, D. J., An intrinsic growth instability in isotropic materials leads to quasi-two-dimensional nanoplatelets. Nat. Mater. 2017, 16, 743.
    19. Nevers, D. R.; Williamson, C. B.; Savitzky, B. H.; Hadar, I.; Banin, U.; Kourkoutis, L. F.; Hanrath, T.; Robinson, R. D., Mesophase Formation Stabilizes High-Purity Magic-Sized Clusters. J. Am. Chem. Soc. 2018, 140 (10), 3652-3662.
    20. Yu, K., CdSe Magic-Sized Nuclei, Magic-Sized Nanoclusters and Regular Nanocrystals: Monomer Effects on Nucleation and Growth. Adv. Mater. 2012, 24 (8), 1123-1132.
    21. Wang, Y.; Zhang, Y.; Wang, F.; Giblin, D. E.; Hoy, J.; Rohrs, H. W.; Loomis, R. A.; Buhro, W. E., The Magic-Size Nanocluster (CdSe)(34) as a Low-Temperature Nucleant for Cadmium Selenide Nanocrystals; Room-Temperature Growth of Crystalline Quantum Platelets. Chem. Mater. 2014, 26 (7), 2233-2243.
    22. Yang, J.; Fainblat, R.; Kwon, S. G.; Muckel, F.; Yu, J. H.; Terlinden, H.; Kim, B. H.; Iavarone, D.; Choi, M. K.; Kim, I. Y.; Park, I.; Hong, H.-K.; Lee, J.; Son, J. S.; Lee, Z.; Kang, K.; Hwang, S.-J.; Bacher, G.; Hyeon, T., Route to the Smallest Doped Semiconductor: Mn2+-Doped (CdSe)13 Clusters. J. Am. Chem. Soc. 2015, 137 (40), 12776-12779.
    23. Thomson, J. W.; Nagashima, K.; Macdonald, P. M.; Ozin, G. A., From Sulfur−Amine Solutions to Metal Sulfide Nanocrystals: Peering into the Oleylamine−Sulfur Black Box. J. Am. Chem. Soc. 2011, 133 (13), 5036-5041.
    24. Nguyen, K. A.; Day, P. N.; Pachter, R., Understanding Structural and Optical Properties of Nanoscale CdSe Magic-Size Quantum Dots: Insight from Computational Prediction. J. Phys. Chem. C 2010, 114 (39), 16197-16209.
    25. Nguyen, K. A.; Pachter, R.; Day, P. N., Computational Prediction of Structures and Optical Excitations for Nanoscale Ultrasmall ZnS and CdSe Clusters. Journal of Chemical Theory and Computation 2013, 9 (8), 3581-3596.
    26. Yang, J.; Fainblat, R.; Kwon, S. G.; Muckel, F.; Yu, J. H.; Terlinden, H.; Kim, B. H.; Iavarone, D.; Choi, M. K.; Kim, I. Y.; Park, I.; Hong, H. K.; Lee, J.; Son, J. S.; Lee, Z.; Kang, K.; Hwang, S. J.; Bacher, G.; Hyeon, T., Route to the Smallest Doped Semiconductor: Mn(2+)-Doped (CdSe)13 Clusters. J. Am. Chem. Soc. 2015, 137 (40), 12776-9.
    27. Wang, Y.; Fedin, I.; Zhang, H.; Talapin, D. V., Direct optical lithography of functional inorganic nanomaterials. Science 2017, 357 (6349), 385.
    28. Levchenko, T. I.; Kübel, C.; Khalili Najafabadi, B.; Boyle, P. D.; Cadogan, C.; Goncharova, L. V.; Garreau, A.; Lagugné-Labarthet, F.; Huang, Y.; Corrigan, J. F., Luminescent CdSe Superstructures: A Nanocluster Superlattice and a Nanoporous Crystal. J. Am. Chem. Soc. 2017, 139 (3), 1129-1144.
    29. Boulesbaa, A.; Wang, K.; Mahjouri-Samani, M.; Tian, M.; Puretzky, A. A.; Ivanov, I.; Rouleau, C. M.; Xiao, K.; Sumpter, B. G.; Geohegan, D. B., Ultrafast Charge Transfer and Hybrid Exciton Formation in 2D/0D Heterostructures. J. Am. Chem. Soc. 2016, 138 (44), 14713-14719.
    30. Goebl, J. A.; Black, R. W.; Puthussery, J.; Giblin, J.; Kosel, T. H.; Kuno, M., Solution-Based II−VI Core/Shell Nanowire Heterostructures. J. Am. Chem. Soc. 2008, 130 (44), 14822-14833.
    31. Peng, X.; Schlamp, M. C.; Kadavanich, A. V.; Alivisatos, A. P., Epitaxial Growth of Highly Luminescent CdSe/CdS Core/Shell Nanocrystals with Photostability and Electronic Accessibility. J. Am. Chem. Soc. 1997, 119 (30), 7019-7029.
    32. Hunter, K. I.; Held, J. T.; Mkhoyan, K. A.; Kortshagen, U. R., Nonthermal Plasma Synthesis of Core/Shell Quantum Dots: Strained Ge/Si Nanocrystals. ACS Appl. Mater. Interfaces 2017, 9 (9), 8263-8270.
    33. Zhang, X.; Brynda, M.; Britt, R. D.; Carroll, E. C.; Larsen, D. S.; Louie, A. Y.; Kauzlarich, S. M., Synthesis and Characterization of Manganese-Doped Silicon Nanoparticles:  Bifunctional Paramagnetic-Optical Nanomaterial. J. Am. Chem. Soc. 2007, 129 (35), 10668-10669.
    34. Ling, X.; Shi, R.; Zhang, J.; Liu, D.; Weng, M.; Zhang, C.; Lu, M.; Xie, X.; Huang, L.; Huang, W., Dual-Signal Luminescent Detection of Dopamine by a Single Type of Lanthanide-Doped Nanoparticles. ACS Sensors 2018, 3 (9), 1683-1689.
    35. Muckel, F.; Yang, J.; Lorenz, S.; Baek, W.; Chang, H.; Hyeon, T.; Bacher, G.; Fainblat, R., Digital Doping in Magic-Sized CdSe Clusters. ACS Nano 2016, 10 (7), 7135-7141.
    36. Huang, X.; Li, J.; Zhang, Y.; Mascarenhas, A., From 1D Chain to 3D Network:  Tuning Hybrid II-VI Nanostructures and Their Optical Properties. J. Am. Chem. Soc. 2003, 125 (23), 7049-7055.
    37. Lu, J.; Wei, S.; Yu, W.; Zhang, H.; Qian, Y., Structure and Luminescence of 2D Dilute Magnetic Semiconductors:  Cd1-xMnxSe·L0.5 (L = Diamines). Chem. Mater. 2005, 17 (7), 1698-1703.
    38. Khan, A. H.; Pinchetti, V.; Tanghe, I.; Dang, Z.; Martín-García, B.; Hens, Z.; Van Thourhout, D.; Geiregat, P.; Brovelli, S.; Moreels, I., Tunable and Efficient Red to Near-Infrared Photoluminescence by Synergistic Exploitation of Core and Surface Silver Doping of CdSe Nanoplatelets. Chem. Mater. 2019, 31 (4), 1450-1459.
    39. Mir, W. J.; Jagadeeswararao, M.; Das, S.; Nag, A., Colloidal Mn-Doped Cesium Lead Halide Perovskite Nanoplatelets. ACS Energy Letters 2017, 2 (3), 537-543.
    40. Zhang, Y.; Liu, Y.; Li, C.; Chen, X.; Wang, Q., Controlled Synthesis of Ag2S Quantum Dots and Experimental Determination of the Exciton Bohr Radius. J. Phys. Chem. C 2014, 118 (9), 4918-4923.
    41. Barrelet, C. J.; Wu, Y.; Bell, D. C.; Lieber, C. M., Synthesis of CdS and ZnS Nanowires Using Single-Source Molecular Precursors. J. Am. Chem. Soc. 2003, 125 (38), 11498-11499.
    42. Sato, K.; Castaldini, A.; Fukata, N.; Cavallini, A., Electronic Level Scheme in Boron- and Phosphorus-Doped Silicon Nanowires. Nano Lett. 2012, 12 (6), 3012-3017.
    43. Zhang, Y.; Meng, Y.; Zhu, K.; Qiu, H.; Ju, Y.; Gao, Y.; Du, F.; Zou, B.; Chen, G.; Wei, Y., Copper-Doped Titanium Dioxide Bronze Nanowires with Superior High Rate Capability for Lithium Ion Batteries. ACS Appl. Mater. Interfaces 2016, 8 (12), 7957-7965.
    44. Sharma, M.; Olutas, M.; Yeltik, A.; Kelestemur, Y.; Sharma, A.; Delikanli, S.; Guzelturk, B.; Gungor, K.; McBride, J. R.; Demir, H. V., Understanding the Journey of Dopant Copper Ions in Atomically Flat Colloidal Nanocrystals of CdSe Nanoplatelets Using Partial Cation Exchange Reactions. Chem. Mater. 2018, 30 (10), 3265-3275.
    45. Yang, J.; Muckel, F.; Baek, W.; Fainblat, R.; Chang, H.; Bacher, G.; Hyeon, T., Chemical Synthesis, Doping, and Transformation of Magic-Sized Semiconductor Alloy Nanoclusters. J. Am. Chem. Soc. 2017, 139 (19), 6761-6770.
    46. McMillan, R. A.; Howard, J.; Zaluzec, N. J.; Kagawa, H. K.; Mogul, R.; Li, Y.-F.; Paavola, C. D.; Trent, J. D., A Self-Assembling Protein Template for Constrained Synthesis and Patterning of Nanoparticle Arrays. J. Am. Chem. Soc. 2005, 127 (9), 2800-2801.
    47. Varol, H. S.; Álvarez-Bermúdez, O.; Dolcet, P.; Kuerbanjiang, B.; Gross, S.; Landfester, K.; Muñoz-Espí, R., Crystallization at Nanodroplet Interfaces in Emulsion Systems: A Soft-Template Strategy for Preparing Porous and Hollow Nanoparticles. Langmuir 2016, 32 (49), 13116-13123.
    48. Okada, T.; Koide, T., Uniform-Sized Silica Nanocapsules Produced by Addition of Salts to a Water-In-Oil Emulsion Template. Langmuir 2018, 34 (32), 9500-9506.
    49. Komamura, T.; Okuhara, K.; Horiuchi, S.; Nabae, Y.; Hayakawa, T., Fabrication of Well-Ordered Mesoporous Polyimide Films by a Soft-Template Method. ACS Applied Polymer Materials 2019, 1 (5), 1209-1219.
    50. Lee, C.; Hwang, A.; Jose, L.; Park, J. H.; Song, J. K.; Shim, K.; An, S. S. A.; Paik, H.-j., Orientation Controlled Protein Nanocapsules by Enzymatic Removal of a Polymer Template. Biomacromolecules 2018, 19 (11), 4219-4227.
    51. Martín, J.; Manzano, C. V.; Caballero-Calero, O.; Martín-González, M., High-Aspect-Ratio and Highly Ordered 15-nm Porous Alumina Templates. ACS Appl. Mater. Interfaces 2013, 5 (1), 72-79.
    52. Zhang, F.; Liu, X.; Pan, C.; Zhu, J., Nano-porous anodic aluminium oxide membranes with 6–19 nm pore diameters formed by a low-potential anodizing process. Nanotechnology 2007, 18 (34), 345302.
    53. Bourlinos, A. B.; Karakassides, M. A.; Petridis, D., Synthesis and Characterization of Iron-Containing MCM-41 Porous Silica by the Exchange Method of the Template. The Journal of Physical Chemistry B 2000, 104 (18), 4375-4380.
    54. Cho, M. S.; Choi, H. J.; Ahn, W.-S., Enhanced Electrorheology of Conducting Polyaniline Confined in MCM-41 Channels. Langmuir 2004, 20 (1), 202-207.
    55. Janus, R.; Wach, A.; Kuśtrowski, P.; Dudek, B.; Drozdek, M.; Silvestre-Albero, A. M.; Rodríguez-Reinoso, F.; Cool, P., Investigation on the Low-Temperature Transformations of Poly(furfuryl alcohol) Deposited on MCM-41. Langmuir 2013, 29 (9), 3045-3053.
    56. Chen, C.-M.; Huang, Y.-J.; Wei, K.-H., Structural development of gold and silver nanoparticles within hexagonally ordered spherical micellar diblock copolymer thin films. Nanoscale 2014, 6 (11), 5999-6008.
    57. Liao, H.-C.; Chen, S.-Y.; Liu, D.-M., In-Situ Growing CdS Single-Crystal Nanorods via P3HT Polymer as a Soft Template for Enhancing Photovoltaic Performance. Macromolecules 2009, 42 (17), 6558-6563.
    58. Malgras, V.; Tominaka, S.; Ryan, J. W.; Henzie, J.; Takei, T.; Ohara, K.; Yamauchi, Y., Observation of Quantum Confinement in Monodisperse Methylammonium Lead Halide Perovskite Nanocrystals Embedded in Mesoporous Silica. J. Am. Chem. Soc. 2016, 138 (42), 13874-13881.
    59. Ghosh, J.; Ghosh, R.; Giri, P. K., Mesoporous Si Nanowire Templated Controlled Fabrication of Organometal Halide Perovskite Nanoparticles with High Photoluminescence Quantum Yield for Light-Emitting Applications. ACS Applied Nano Materials 2018, 1 (4), 1551-1562.
    60. Liu, Y.; Zhang, B.; Fan, H.; Rowell, N.; Willis, M.; Zheng, X.; Che, R.; Han, S.; Yu, K., Colloidal CdSe 0-Dimension Nanocrystals and Their Self-Assembled 2-Dimension Structures. Chem. Mater. 2018, 30 (5), 1575-1584.
    61. Collier, J. H.; Messersmith, P. B., Self-Assembling Polymer–Peptide Conjugates: Nanostructural Tailoring. Adv. Mater. 2004, 16 (11), 907-910.
    62. Chan, V. Z. H.; Hoffman, J.; Lee, V. Y.; Iatrou, H.; Avgeropoulos, A.; Hadjichristidis, N.; Miller, R. D.; Thomas, E. L., Ordered Bicontinuous Nanoporous and Nanorelief Ceramic Films from Self Assembling Polymer Precursors. Science 1999, 286 (5445), 1716.
    63. Chen, D.; Nakahara, A.; Wei, D.; Nordlund, D.; Russell, T. P., P3HT/PCBM Bulk Heterojunction Organic Photovoltaics: Correlating Efficiency and Morphology. Nano Lett. 2011, 11 (2), 561-567.
    64. Planells, M.; Abate, A.; Snaith, H. J.; Robertson, N., Oligothiophene Interlayer Effect on Photocurrent Generation for Hybrid TiO2/P3HT Solar Cells. ACS Appl. Mater. Interfaces 2014, 6 (19), 17226-17235.
    65. Jung, E. H.; Jeon, N. J.; Park, E. Y.; Moon, C. S.; Shin, T. J.; Yang, T.-Y.; Noh, J. H.; Seo, J., Efficient, stable and scalable perovskite solar cells using poly(3-hexylthiophene). Nature 2019, 567 (7749), 511-515.
    66. Vladimirov, I.; Kellermeier, M.; Geßner, T.; Molla, Z.; Grigorian, S.; Pietsch, U.; Schaffroth, L. S.; Kühn, M.; May, F.; Weitz, R. T., High-Mobility, Ultrathin Organic Semiconducting Films Realized by Surface-Mediated Crystallization. Nano Lett. 2018, 18 (1), 9-14.
    67. Yeh, G. S. Y.; Hosemann, R.; Loboda-Čačković, J.; Čačković, H., Annealing effects of polymers and their underlying molecular mechanisms. Polymer 1976, 17 (4), 309-318.
    68. Peterlin, A., Annealing of drawn crystalline polymers. Polymer Engineering & Science 1978, 18 (6), 488-495.
    69. Liu, Y.-H.; Wayman, V. L.; Gibbons, P. C.; Loomis, R. A.; Buhro, W. E., Origin of High Photoluminescence Efficiencies in CdSe Quantum Belts. Nano Lett. 2010, 10 (1), 352-357.

    下載圖示
    QR CODE