簡易檢索 / 詳目顯示

研究生: 陳胤儒
Chen, Yin-Ju
論文名稱: 前十字韌帶重建者回場後單腳跳落地之動態姿勢控制分析
Analysis of Dynamic Postural Control During Single-Leg Jump-Landings in Anterior Cruciate Ligament Reconstructed Individuals after Return to Play
指導教授: 李恆儒
Lee, Heng-Ju
口試委員: 李恆儒
Lee, Heng-Ju
林建志
Lin, Jian-Zhi
黃昱倫
Huang, Yu-Lun
口試日期: 2023/07/20
學位類別: 碩士
Master
系所名稱: 體育與運動科學系
Department of Physical Education and Sport Sciences
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 35
英文關鍵詞: Time to stabilization, Dynamic postural stability index, Single-leg vertical jump, Single-leg forward hop
研究方法: 比較研究觀察研究
DOI URL: http://doi.org/10.6345/NTNU202301583
論文種類: 學術論文
相關次數: 點閱:242下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Background: Anterior cruciate ligament reconstructed (ACLR) patients have been found with altered landing strategies in injured leg even after return to sports. Dynamic postural control is described as a complicated coordinating result of individuals to receive signals from visual, vestibular and somatosensory system then process through center nervous system and finally respond. In landing tasks, they provide more stimulation of feedforward components in sensorimotor control and higher ground reaction force than static balancing, they can also reflect our moving patterns in sport better. As a result, landing tasks are often used as a screening procedure of dynamic postural control. The developed dynamic postural control indexes Time to stabilization (TTS) and dynamic postural stability index (DPSI) in ACLR, and the jump-landing tasks of choice for ACLR are still lack of investigation. Purpose: To discuss dynamic postural control of anterior cruciate ligament reconstructed individuals after return to play with TTS, and DPSI during single-leg vertical jump and single-leg forward hop. Methods: 10 healthy and 10 ACLR subjects were recruited and asked to perform above mentioned tasks in random orders. One Kistler force plate will used for the kinetic data collection at 1000 Hz. Each subject was asked to perform 3 successful single-leg forward hops and 3 successful single-leg vertical jumps. Healthy group and ACLR group were asked to perform with both legs. For each landing, subjects were instructed to stabilize as quickly as possible. Two-way analysis of variance (Two-Way ANOVA) was used for analyzing the differences of TTS and DPSI between ACLR and Healthy group. Post-hoc analysis was performed using t-test with Bonferroni if there was statistically significant in Two-Way ANOVA. Significant level was set at α=.05. Results and conclusion: There were significant differences in mediolateral TTS between ACLR and Healthy group In ACLR group, ML_TTS of ACLR side was significantly higher than contralateral limb (p=0.012). There were significant differences between the two groups in mediolateral TTS (between ACLR and healthy matched limb, p=0.037; between ACLR and healthy contralateral limb, p=0.020). Individuals still show dynamic postural control deficiency through TTS screening while performing SLVJ. Mediolateral directional control of single-leg vertical jump might be more challenging for ACLR’s reconstructed side. There was no significant difference of DPSI between groups and limbs.

    ACKNOWLEDGEMENT i ABSTRACT ii TABLE OF CONTENTS iv LIST OF FIGURES vii LIST OF TABLES vii Chapter I INTRODUCTION 1 1.1 General Background Information 1 1.2 Research Purpose 2 1.3 Hypotheses 2 Chapter II LITERATURE REVIEW 3 2.1 Anterior cruciate ligament injuries and anterior cruciate ligament reconstruction 3 2.2 Dynamic postural control of anterior cruciate ligament reconstruction individuals 4 2.3 Jump-landing tasks and dynamic postural control 5 2.4 TTS and DPSI in Anterior cruciate ligament reconstruction individuals 6 2.5 Summary 7 Chapter Ⅲ METHODOLOGY 8 3.1 Participants 8 3.2 Materials and Equipment 8 3.3 Anthropological measuring 9 3.4 Jump-landing tasks 9 3.5 Data processing 11 3.6 Procedure 12 3.7 Data analysis 14 Chapter Ⅳ RESULTS 15 4.1 Basic information 15 4.2 TTS 16 4.3 DPSI 16 4.4 Jump-landing performance 16 Chapter Ⅴ DISCUSSION 19 5.1 The selection of jump-landing tasks for dynamic postural control 19 5.2 Mediolateral postural control in ACLR 20 5.3 The different aspect of two dynamic postural control indexes(TTS and DPSI) 21 Chapter Ⅵ LIMITATION AND SUGGESTION 23 Chapter Ⅶ CONCLUSION 24 REFERENCES 25 Appendix A. Participation Letter 31 Appendix B. Participation Agreement 32 Appendix C. Basic Information 33 Appendix D-1. Cumberland Ankle Instability Tool 34 Appendix D-2. 坎伯蘭踝關節不穩定問卷 35

    Armitano‐Lago, C. N., Morrison, S., Hoch, J. M., Bennett, H. J., & Russell, D. M. (2020). Anterior cruciate ligament reconstructed individuals demonstrate slower reactions during a dynamic postural task. Scandinavian Journal of Medicine & Science in Sports, 30(8), 1518-1528.
    Bartels, T., Brehme, K., Pyschik, M., Pollak, R., Schaffrath, N., Schulze, S., ... & Schwesig, R. (2019). Postural stability and regulation before and after anterior cruciate ligament reconstruction–A two years longitudinal study. Physical Therapy in Sport, 38, 49-58.
    Brophy, R., Silvers, H. J., Gonzales, T., & Mandelbaum, B. R. (2010). Gender influences: the role of leg dominance in ACL injury among soccer players. British Journal of Sports Medicine, 44(10), 694-697.
    Chaudhari, A. M. W., Briant, P. L., Bevill, S. L., Koo, S., & Andriacchi, T. P. (2008). Knee kinematics, cartilage morphology, and osteoarthritis after ACL injury. Medicine and Science in Sports and Exercise, 40(2), 215-222. https://doi.org/10.1249/mss.0b013e31815cbb0e
    Cronström, A., & Ageberg, E. (2014). Association between sensory function and medio-lateral knee position during functional tasks in patients with anterior cruciate ligament injury. BMC musculoskeletal disorders, 15, 1-9.
    Culvenor, A. G., Alexander, B. C., Clark, R. A., Collins, N. J., Ageberg, E., Morris, H. G., ... & Crossley, K. M. (2016). Dynamic single-leg postural control is impaired bilaterally following anterior cruciate ligament reconstruction: implications for reinjury risk. Journal of Orthopaedic & Sports Physical Therapy, 46(5), 357-364.
    Decker, M. J., Torry, M. R., Noonan, T. J., Riviere, A., & Sterett, W. I. (2002). Landing adaptations after ACL reconstruction. Medicine and Science in Sports and Exercise, 34(9), 1408-1413.
    Delahunt, E., Chawke, M., Kelleher, J., Murphy, K., Prendiville, A., Sweeny, L., & Patterson, M. (2013). Lower Limb Kinematics and Dynamic Postural Stability in Anterior Cruciate Ligament-Reconstructed Female Athletes. Journal of Athletic Training, 48(2), 172-185. https://doi.org/10.4085/1062-6050-48.2.05
    Duthon, V. B., Barea, C., Abrassart, S., Fasel, J. H., Fritschy, D., & Ménétrey, J. (2006). Anatomy of the anterior cruciate ligament. Knee Surgery, Sports Traumatology, Arthroscopy, 14(3), 204-213. https://doi.org/10.1007/s00167-005-0679-9
    Faunø, P., & Jakobsen, B. W. (2006). Mechanism of anterior cruciate ligament injuries in soccer. International Journal of Sports Medicine, 27(01), 75-79.
    Fransz, D. P., Huurnink, A., de Boode, V. A., Kingma, I., & van Dieën, J. H. (2015). Time to stabilization in single leg drop jump landings: an examination of calculation methods and assessment of differences in sample rate, filter settings and trial length on outcome values. Gait & Posture, 41(1), 63-69.
    Friedberg, R. P. (2015). Anterior cruciate ligament injury. UpToDate, Waltham, MA.(Acceso: 25 de Noviembre de 2016).
    Gokeler, A., Hof, A., Arnold, M., Dijkstra, P., Postema, K., & Otten, E. (2010). Abnormal landing strategies after ACL reconstruction. Scandinavian Journal of Medicine & Science in Sports, 20(1), e12-e19.
    Gribble, P. A., Hertel, J., & Plisky, P. (2012). Using the Star Excursion Balance Test to assess dynamic postural-control deficits and outcomes in lower extremity injury: a literature and systematic review. Journal of Athletic Training, 47(3), 339-357.
    Gribble, P. A., Kelly, S. E., Refshauge, K. M., & Hiller, C. E. (2013). Interrater reliability of the star excursion balance test. Journal of Athletic Training, 48(5), 621-626.
    Gupta, R., Singhal, A., Malhotra, A., Soni, A., Masih, G. D., & Raghav, M. (2020). Predictors for anterior cruciate ligament (ACL) re-injury after successful primary ACL reconstruction (ACLR). Malaysian Orthopaedic Journal, 14(3), 50.
    Head, P. L., Kasser, R., Appling, S., Cappaert, T., Singhal, K., & Zucker-Levin, A. (2019). Anterior cruciate ligament reconstruction and dynamic stability at time of release for return to sport. Physical Therapy in Sport, 38, 80-86. https://doi.org/https://doi.org/10.1016/j.ptsp.2019.04.016
    Heinert, B., Willett, K., & Kernozek, T. W. (2018). Influence of anterior cruciate ligament reconstruction on dynamic postural control. International Journal of Sports Physical Therapy, 13(3), 432-440. https://pubmed.ncbi.nlm.nih.gov/30038829
    https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6044584/
    Hiller, C. E., Refshauge, K. M., Bundy, A. C., Herbert, R. D., & Kilbreath, S. L. (2006). The Cumberland ankle instability tool: a report of validity and reliability testing. Archives of Physical Medicine and Rehabilitation, 87(9), 1235-1241.
    Horak, F. (2009). Postural Control. In (pp. 3212-3219). https://doi.org/10.1007/978-3-540-29678-2_4708
    Horak, F., & Kuo, A. (2000). Postural adaptation for altered environments, tasks, and intentions. In Biomechanics and Neural Control of Posture and Movement (pp. 267-281). Springer.
    Howells, B. E., Ardern, C. L., & Webster, K. E. (2011). Is postural control restored following anterior cruciate ligament reconstruction? A systematic review. Knee Surgery, Sports Traumatology, Arthroscopy, 19(7), 1168-1177. https://doi.org/10.1007/s00167-011-1444-x
    Huurnink, A., Fransz, D. P., Kingma, I., de Boode, V. A., & van Dieën, J. H. (2019). The assessment of single-leg drop jump landing performance by means of ground reaction forces: A methodological study. Gait & Posture, 73, 80-85.
    Ivanenko, Y., & Gurfinkel, V. S. (2018). Human Postural Control [Review]. Frontiers in Neuroscience, 12. https://doi.org/10.3389/fnins.2018.00171
    Johnston, P. T., McClelland, J. A., & Webster, K. E. (2018). Lower limb biomechanics during single-leg landings following anterior cruciate ligament reconstruction: a systematic review and meta-analysis. Sports Medicine, 48(9), 2103-2126.
    Kimura, Y., Ishibashi, Y., Tsuda, E., Yamamoto, Y., Tsukada, H., & Toh, S. (2010). Mechanisms for anterior cruciate ligament injuries in badminton. British Journal of Sports Medicine, 44(15), 1124-1127.
    Kotsifaki, A., Korakakis, V., Graham-Smith, P., Sideris, V., & Whiteley, R. (2021). Vertical and horizontal hop performance: contributions of the hip, knee, and ankle. Sports Health, 13(2), 128-135.
    Kotsifaki, A., Van Rossom, S., Whiteley, R., Korakakis, V., Bahr, R., Sideris, V., & Jonkers, I. (2022). Single leg vertical jump performance identifies knee function deficits at return to sport after ACL reconstruction in male athletes. British journal of sports medicine, 56(9), 490-498.
    Krosshaug, T., Nakamae, A., Boden, B. P., Engebretsen, L., Smith, G., Slauterbeck, J. R., Hewett, T. E., & Bahr, R. (2007). Mechanisms of anterior cruciate ligament injury in basketball: video analysis of 39 cases. The American Journal of Sports Medicine, 35(3), 359-367.
    Laudner, K., Evans, D., Wong, R., Allen, A., Kirsch, T., Long, B., & Meister, K. (2015). Relationship between isokinetic knee strength and jump characteristics following anterior cruciate ligament reconstruction. International journal of sports physical therapy, 10(3), 272.
    Meredith, S. J., Rauer, T., Chmielewski, T. L., Fink, C., Diermeier, T., Rothrauff, B. B., Svantesson, E., Hamrin Senorski, E., Hewett, T. E., & Sherman, S. L. (2020). Return to sport after anterior cruciate ligament injury: Panther Symposium ACL Injury Return to Sport Consensus Group. Orthopaedic Journal of Sports Medicine, 8(6), 2325967120930829.
    Mohammadi, F., Salavati, M., Akhbari, B., Mazaheri, M., Khorrami, M., & Negahban, H. (2012). Static and dynamic postural control in competitive athletes after anterior cruciate ligament reconstruction and controls. Knee Surgery, Sports Traumatology, Arthroscopy, 20(8), 1603-1610. https://doi.org/10.1007/s00167-011-1806-4
    Norouzi, S., Esfandiarpour, F., Mehdizadeh, S., Yousefzadeh, N. K., & Parnianpour, M. (2019). Lower extremity kinematic analysis in male athletes with unilateral anterior cruciate reconstruction in a jump-landing task and its association with return to sport criteria. BMC musculoskeletal disorders, 20, 1-9.
    Olsen, O.-E., Myklebust, G., Engebretsen, L., & Bahr, R. (2004). Injury mechanisms for anterior cruciate ligament injuries in team handball: a systematic video analysis. The American Journal of Sports Medicine, 32(4), 1002-1012.
    Paterno, M. V., Schmitt, L. C., Ford, K. R., Rauh, M. J., Myer, G. D., Huang, B., & Hewett, T. E. (2010). Biomechanical measures during landing and postural stability predict second anterior cruciate ligament injury after anterior cruciate ligament reconstruction and return to sport. The American Journal of Sports Medicine, 38(10), 1968-1978.
    Plisky, P. J., Rauh, M. J., Kaminski, T. W., & Underwood, F. B. (2006). Star Excursion Balance Test as a predictor of lower extremity injury in high school basketball players. Journal of Orthopaedic & Sports Physical Therapy, 36(12), 911-919.
    PL, W. (1995). Bannister LH. Berry MM. Collins P. Dyson M. Dussek JE. Gray’s Anatomy. Alimentary system. 38th ed. Churchill Livingstone, New York, 1775-6.
    Roos, P. E., Button, K., Sparkes, V., & van Deursen, R. W. (2014). Altered biomechanical strategies and medio-lateral control of the knee represent incomplete recovery of individuals with injury during single leg hop. Journal of Biomechanics, 47(3), 675-680.
    Salmon, L., Russell, V., Musgrove, T., Pinczewski, L., & Refshauge, K. (2005). Incidence and risk factors for graft rupture and contralateral rupture after anterior cruciate ligament reconstruction. Arthroscopy: The Journal of Arthroscopic & Related Surgery, 21(8), 948-957.
    Schmitt, L. C., Paterno, M. V., Ford, K. R., Myer, G. D., & Hewett, T. E. (2015). Strength Asymmetry and Landing Mechanics at Return to Sport after Anterior Cruciate Ligament Reconstruction. Medicine and Science in Sports and Exercise, 47(7), 1426-1434. https://doi.org/10.1249/MSS.0000000000000560
    Smith, M. D., & Bell, D. R. (2013). Negative effects on postural control after anterior cruciate ligament reconstruction as measured by the balance error scoring system. Journal of Sport Rehabilitation, 22(3), 224-228.
    Swearingen, J., Lawrence, E., Stevens, J., Jackson, C., Waggy, C., & Davis, D. S. (2011). Correlation of single leg vertical jump, single leg hop for distance, and single leg hop for time. Physical Therapy in Sport, 12(4), 194-198.
    Uebayashi, K., Akasaka, K., Tamura, A., Otsudo, T., Sawada, Y., Okubo, Y., & Hall, T. (2019). Characteristics of trunk and lower limb alignment at maximum reach during the Star Excursion Balance Test in subjects with increased knee valgus during jump landing. Plos one, 14(1), e0211242.
    Webster, K. A., & Gribble, P. A. (2010). Time to stabilization of anterior cruciate ligament–reconstructed versus healthy knees in National Collegiate Athletic Association Division I female athletes. Journal of Athletic Training, 45(6), 580-585.
    Williams, V. J., Nagai, T., Sell, T. C., Abt, J. P., Rowe, R. S., McGrail, M. A., & Lephart, S. M. (2016). Prediction of dynamic postural stability during single-leg jump landings by ankle and knee flexibility and strength. Journal of Sport Rehabilitation, 25(3), 266-272.
    Woo, S. L., Wu, C., Dede, O., Vercillo, F., & Noorani, S. (2006). Biomechanics and anterior cruciate ligament reconstruction. Journal of Orthopaedic Surgery and Research, 1, 1-9

    下載圖示
    QR CODE