簡易檢索 / 詳目顯示

研究生: 蕭惠后
Hsiao Huihou
論文名稱: 在非密集微細包重疊的無限網路環境下,基於移動式的位置更新報告
Movement-Based Location Update in Wireless Networks with Sparse Microcell Overlays
指導教授: 蔡榮宗
Tsai, Jung-Tsung
學位類別: 碩士
Master
系所名稱: 資訊教育研究所
Graduate Institute of Information and Computer Education
論文出版年: 2001
畢業學年度: 89
語文別: 英文
論文頁數: 101
中文關鍵詞: 無限網路追蹤位置更新報告
英文關鍵詞: wireless network, tracking, location update
論文種類: 學術論文
相關次數: 點閱:149下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 期望中的無線網路需要在任何時間及任何地方都能夠提供各種媒體的服務。成功的關鍵之一在於有效地做移動管理(mobility management)。明確地來說,移動管理是用來追蹤可動式平台(mobile platform)的系統架構。
    本研究的主要目的為在於無線通訊網路雙層架構下,發展出有效的位置更新報告(location update)機制來追蹤移動平台。此機制以高層無線細胞移動式策略(movement-based strategy)作為基礎,並利用透過低層細胞(microcell) 做較低成本的動態式(adaptive)位置更新報告。在我們提出的機制中,藉由二個不同的門檻值(threshold)來決定由哪一層細胞做位置更新報告,而且每一個可動平台皆有一個計數器用來記錄從上一次位置更新報告到目前橫過高層細胞(macrocell)的次數;當計數器值大於或等於低門檻值時,此機制容許可動平台透過低層細胞的基地台做位置更新報告;當計數器達到高門檻值時,此機制要求可動平台立刻從高層細胞的基地台做位置更新報告。此論文中並探討動態位置更新報告機制,在數種不同的無線網路拓璞(topology)下追踨移動平台的效能。
    此外,我們根據區域性低層細胞存在密度空間上的變化,來動態調整低門檻值以增進位置更新報告的效能。再者,更進一步利用在可動平台上增加額外的記憶體(memory)用來減少不必要的位置更新報告。

    This research focuses on developing cost-effective location update schemes for tracking mobile users in wireless networks underlaid sparsely with microcells. The proposed schemes are able to take advantage of lower location update cost through microcells by using movement-based strategies with a novel mechanism of reporting. The effects are achieved essentially through the use of two movement thresholds for decision on which tier to report to. Each mobile platform (MP) has a counter to record the number of macrocell transitions from the last reported cell. If the number is greater or equal to the lower threshold, called the s-threshold, the MP updates its location through the control channel of a microcell being visited. If the number reaches the higher threshold, called the h-threshold, the MP updates location immediately through the control channel of the macrocell it currently visits. This work examines the performance of total update cost per call arrival for the proposed scheme in several scenarios of network topology. In addition, adaptive schemes that adjust s-threshold according to local estimate of microcell density are proposed to further exploit potential cost gain from spatial variation of microcell density. Furthermore, the effects of using one more cell-ID buffer in MPs to reduce unnecessary location update are presented.

    Abstract (in Chinese) ...................................i Abstract (in English) ....................................................ii Acknowledgment ...................................................iii Table of Contents .....................................................v List of Figures ...................................................vii List of Tables ....................................................ix Chapter 1 Introduction .....................................................1 1.1 Introduction .....................................................1 1.2 Objective .....................................................3 1.3 Background and Related work .....................................................4 1.3.1 On Current Location Management Protocols .........................4 1.3.2 On Location Registration and Call Delivery .........................6 1.3.3 On Location Update and Terminal Paging .........................7 1.3.3.1 Location update strategies .........................................8 1.3.3.2 Intelligent paging strategy .......................................10 1.3.3.3 Dynamic location registration area (LA) .......................11 1.4 Thesis organization ....................................................13 Chapter 2 The System ....................................................14 2.1 System Architecture ....................................................14 2.1.1 The Macrocell/Microcell Overlay ...............................................14 2.1.2 MP mobility ....................................................16 2.2 The System Requirement in MSC and MP .......................................17 2.3 Tracking Strategy ....................................................18 2.3.1 Movement-based location update strategy ...............................18 2.3.2 Paging strategy ....................................................19 2.4 Operation about dh and ds pair ....................................................20 2.4.1 Static Tracking Strategy (STS) ...............................................20 2.4.2 Adaptive Tracking Strategy (ATS) ...............................................20 2.5 The MP with Additional memory for cell ID .......................................21 Chapter 3 Simulation Model ....................................................25 3.1 Network Topology ....................................................25 3.2 The mobility model and the cost structure .......................................29 3.3 The optimal ds associated with estimated .......................................31 3.3.1 The and optimal ds in ATS without using additional memory for cell ID ....................................................31 3.3.2 The and optimal ds in ATS with additional memory for cell ID. ....................................................32 3.4 Pseudo codes for each location update strategy ...............................34 3.4.1 Algorithm for STS without additional memory .......................35 3.4.2 Algorithm for ATS without additional memory .......................36 3.4.3 Algorithm for STS with additional memory: MAM approach (STS_MAM) ....................................................37 3.4.4 Algorithm for STS with additional memory: MPM approach (STS_MPM) ....................................................38 3.4.5 Algorithm for ATS with additional memory: MAM approach (ATS_MAM) ....................................................39 3.4.6 Algorithm for ATS with additional memory: MPM approach (ATS_MPM) ....................................................40 Chapter 4 Simulation Results ....................................................41 4.1 STS without additional memory ....................................................43 4.1.1 Simulation and analysis results for strategy STS in topology RTCo ....................................................43 4.1.2 The effect of using STS in different partial spatial correlated topology ....................................................47 4.1.3 Strategy STS in different topologies .......................................52 4.2 STS with Additional Memory ....................................................56 4.2.1 STS with additional memory in RTC topologies .......................56 4.2.2 STS, STS-MAM or STS-MPM in NHS topologies ...............64 4.2.3 The effect of changing CMR ....................................................71 4.2.4 The effect of changing update cost_ratio ...............................73 4.3 ATS without Additional Memory ....................................................75 4.3.1 Strategy ATS in topology RTC ...............................................75 4.3.2 Strategy ATS in the NHS topologies .......................................76 4.4 ATS with Additional Memory ....................................................77 Chapter 5 Conclusion and Future Work ....................................................82 Appendix A ....................................................84 References ....................................................98

    [1] M. Mouly and M.B. Pautet, ”The GSM system for mobile communication,” M. Mouly, Palaiseau, France, Tech. Rep. 1992.
    [2] Daqing Gu and Stephen S. Rappaport, “A dynamic location strategy for mobile communication systems.” CEAS Technical Report no.741, July 24,1997,college of Engineering and Applied Sciences, State University of New York, Stony Brook, NY 11794.
    [3] A. Bar-Noy, I. Kessler and M. sidi, “Mobile users: to update or not to update?” Wireless Networks Journal, vol. 39, pp.175-186, 1995.
    [4] I.F.Akyildiz, J.Ho, and Y.B.Lin, “Movement-based location update and selective paging for wireless networks,” IEEE/ACM Trans. Networking, vol. 4, no. 4, pp.629-638, Aug. 1996.
    [5] C.Rose, “State-based paging/registration: a greedy technique,” IEEE Trans. Veh. Technol., vol. 48, no. 1, pp. 25-33. Feb. 1997.
    [6] Wenye Wang, Ian F. Akyildiz, Gordon L. Stuber, “An optimal partition algorithm for minimization of paging costs. “ Proc. IEEE Globecom 2000.
    [7] A. Bar-Noy and I. Kessler and M. Sidi, ”Tracking mobile users in wireless networks,” IEEE Trans. Inform. Theory, vol. 39, no. 6, pp.1877-1886, Nov. 1993.
    [8] Joseph S.M. Ho and Jim Xu, “History-based location tracking for personal communications networks,” Vehicular Technology Conference 1998.
    [9] Jie Li, Hisao Kameda, and Keqin Li, “Optimal dynamic mobility management for PCS networks.” IEEE/ACM Trans. Networking. vol. 8. no. 3, pp.319-327, June 2000.
    [10] Hee C. Lee and Junping Sun, “Mobile location tracking by optimal paging zone partitioning,” International Conference on Universal Personal Communications Record, 1997.
    [11] Anna Hac and Xian Zhou, “Location strategies for personal communication networks: a novel tracking strategy,” IEEE J. Select. Areas Commun., vol. 15, no. 8, pp. 1425-1436, Oct. 1997.
    [12] Seok J. Kim and Chae Y. Lee, “Modeling and analysis of the dynamic location registration and paging in microcellular system,” IEEE Trans. Veh. Technol., vol. 45, no. 1, pp. 82-90, Feb. 1996.
    [13] Gregory P. Pollini and Chih-Lin I, ”A profile-based location strategy and its performance,” IEEE J. Select. Areas Commun., vol. 15, no. 8, pp.1415-1424, Oct. 1997.
    [14] Asimava Bera and Nabanita Das, “Performance analysis of dynamic location updation strategies for mobile users.” International Conference on Distributed Computing System 2000.
    [15] Joseph S.M. Ho and Ian F. Akyildiz, “A dynamic mobility tracking policy for wireless personal communications networks,” Proc. IEEE Globecom. 1995.
    [16] Zohar Naor and Hanoch Levy, “LATS: A load-adaptive threshold scheme for tracking mobile users,” IEEE/ACM Trans. Networking, vol. 7, no. 6, pp. 808-817, Dec. 1999.
    [17] Yigal Bejerano and Israel Cidon, “Efficient location management based on moving location areas,” Proc. IEEE Infocom 2001.
    [18] Ian F. Kyildiz, Janise Mcnair, Joseph S. M. Ho, Huseyin Uzunalglu, and Wenye Wang, “Mobility management in next-generation wireless systems,” Proc. of the IEEE, vol. 87, no. 8, pp.1347-1384, Aug. 1999.
    [19] Tong Liu, Paramvir Bahl and Imrich Chlantac, “Mobility modeling, location tracking, and trajectory prediction in wireless ATM networks,” IEEE J. Select. Areas Commun., vol. 16, no.6, pp. 922-936, Aug. 1998.
    [20] Kao-Hsing Chiang and Nirmala shenoy, “Architecture and schemes for intelligent mobility management is future mobile telecommunication systems,” Proc. IEEE Globecom 2000.
    [21] Hyoung-Kyu Lim and Sae-Woong Bahk, “A timer-based multilayer location management strategy for PCS networks”, International Conference on Universal Personal Communications Record, 1997.
    [22] R. Jain, Y.B. Lin, C. Lo, and S. Mohan, “A caching strategy to reduce network impacts on PCS”, IEEE J. Select. Areas Commun., vol. 12, pp.1434-1445, 1994.
    [23] Y.B. Lin, “Determining the User Locations for Personal Communications Services Networks”, IEEE Trans. Veh. Technol., vol. 43, no. 3, Aug. 1994.
    [24] Y.B. Lin and Shu-Yuen Hwang, ”Comparing the PCS location tracking strategies”, IEEE Trans. Veh. Technol., vol. 45, no. 1, Feb. 1996.
    [25] R. Jain and Y.B. Lin, “An auxiliary user location strategy employing forwarding pointers to reduce network impact of PCS”, ACM-Baltzer J. Wireless network, vol. 1, no. 2, pp. 197-210, July 1995.
    [26] Chien-Yi Ho, “A location tracking strategy using shortcut forwarding pointer in PCN”, Master thesis, Institute of computer Science at National Tsing Hua University.
    [27] Kuen-Liang Sue and Chien-Chao Tseng, “One-step pointer forwarding strategy for location tracking in distributed HLR environment”, IEEE J. Select. Areas Commun., vol. 15, no.8, pp. 1455-1466, Oct. 1997.
    [28] Y.B. Lin and Wen-Nung Tsai, “Location tracking with distributed HLR’s and pointer forwarding”, IEEE Trans. Veh. Technol., vol. 47, no. 1, Feb. 1998.
    [29] Joseph S.M. Ho and Ian F. Akyildiz, “Local anchor scheme for reducing signaling costs in personal communications networks”, IEEE/ACM Trans. Networking, vol. 4, no. 5, pp.709-725, Oct. 1996.
    [30] Joseph S.M. Ho and Ian F. Akyildiz, “Dynamic hierarchical database architecture for location management in PCS networks”, IEEE/ACM Trans. Networking, vol. 5, no. 5, pp.646-660, Oct. 1997.
    [31] Y.B. Lin, “Reducing location update cost in a PCS Networks”, IEEE/ACM Trans. Networking, vol. 5, no. 1, pp. 25-33, Feb. 1997.
    [32] I. F. Akyildiz, Y.B. Lin, W.L. Lai, and R.J. Chen, “A new random walk model for PCS networks,” IEEE J. Select. Areas Commun., vol.18, no. 7, July 2000.
    [33] Jung-Tsung Tsai, “Movement-based location tracking for PCS networks with sparsely underlaid microells”, unpublished.
    [34] Jung-Tsung Tsai and Hui-Hou Hsiao, “Performance of movement-based location update with one-step paging in wireless network with sparsely underlaid micrcells”, unpublished.
    [35] Dimitri Bertsekas and Robert Gallager, Data Network, 2nd ed New Jersey: Prentice-Hall, 1992.

    QR CODE