簡易檢索 / 詳目顯示

研究生: 張智賢
Chih-Hsien Chang
論文名稱: 桌上型雙主軸超精微CNC 工具機開發與細胞鏡檢模仁製作研究
Development of tabletop dual-spindle ultra precision CNC machine tool and research of mould fabrication for microscopic examination of cells
指導教授: 陳順同
Chen, Shun-Tong
學位類別: 碩士
Master
系所名稱: 機電工程學系
Department of Mechatronic Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 127
中文關鍵詞: 雙主軸超精微CNC工具機含硼聚晶鑽石細胞鏡檢晶片
英文關鍵詞: Tabletop dual-spindle ultra precision CNC machine tool, boron-doped PCD, microscopy examination chip of cells
論文種類: 學術論文
相關次數: 點閱:126下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究旨在設計並開發一部「桌上型雙主軸超精微CNC工具機」,主要目的是以此部超精微工具機發展「精微模具」的製造技術,特別是在延性材料如模具鋼或硬脆材料如矽晶圓及光學玻璃等工件上,開發細胞鏡檢晶片的模仁之技術。由於細胞鏡檢晶片具極精細的溝槽結構,所以「桌上型雙主軸超精微CNC工具機」設計成龍門式結構(Gantry framework),並進行受力承載與顫振分析,以建構高剛性及高勁性的工具機,防止加工過程中,結構發生變形而影響加工精度。為減少工件夾持與翻轉校正時間,及設計適於精微模具的製作技術,維持高精度加工,本研究提出「雙主軸」工具機的設計,即工具機上設計可裝置互相垂直的「成對」刀具、工具與量具,以便同時或依序精密加工工件。為此,本研究於開發的工具機上,建構線式放電研削、高速研削、拋光與量測等技術,用於線上精微刀具開發、線上精微模具製作與線上精微拋光等工作。透由線上放電成型技術,本研究能將含硼聚晶鑽石輪刀的切刃,精細加工至5 µm厚度。為成型細胞鏡檢晶片模具之精細溝槽結構,研究中,亦提出一種「高速快淺研削技術」,即裝置於臥式軸上的鑽石輪刀,經線上放電薄化成型後,不做拆卸,直接移位至NAK80模具鋼上,進行陣列微溝的成型研削。高速快淺研削之進給切深,被嚴謹控制在奈米等級的超薄去除量,並加快研削速度,以提高單位時間之金屬移除率。經系列實驗證實,奈米切深能使鑽石輪刀順利地對NAK80模具鋼進行成型研削,並成功開發出槽寬8 µm的陣列微溝,微溝表面粗糙度達Ra10 nm以下。因鑽石輪刀被線上成型且無拆卸,故輪刀能以主軸原始精度進行陣列微溝研削,並獲致極高穩定度的研削效能與研削精度,大幅省卻繁瑣校正時間。研究發現,在多道次微溝研削後,鑽石輪刀仍能維持其切削力,證實奈米切深能使輪刀上的每顆鑽石磨粒因極少的材料移除量,而處於常溫加工,能有效減緩鑽石中的碳原子與鐵原子之親和速度,所以材料移除機制仍容許輪刀以SP3的鑽石結構,對模具鋼的鐵原子進行差排剪切。完成之細胞鏡檢晶片模仁亦不拆卸,直接切換成立式軸,進行線上精拋加工,同時移除陣列微溝毛邊。晶片模仁經精密塑膠射出成型及產學合作之細胞鏡檢公司臨床實驗後,證實此項新開發的塑膠鏡檢晶片已達商業化水準,說明本研究所開發的精微製造技術與雙主軸超精微CNC工具機,完全能提供開發精微模具,特別是生醫模具所需之精微製造技術,此項研究深具商用價值。

    The primary purpose of the thesis is to develop a tabletop dual-spindle ultra precision CNC machine tool and using the finished machine tool to fabricate crisscross microgrooves on ductile material as NAK80 steel and on brittle material as optical glass. This developed technology can be applied to the fabrication of biomedical chip mould for the microscopy examination chip of cells of urinary sediments. The tabletop CNC machine tool is designed with gantry framework to possess high system stiffness for precisely machining the microgrooves on the mould steel. A dual-spindle design which two tools are mutually perpendicularly mounted on the developed machine tool is proposed and four technologies including micro EDM, grinding, polishing and measurement are constructed respectively on the machine tool to in-situ fabricate the micro chip mould. The on-line WEDG method verifies that the boron-doped PCD can be thinned down to 5-µm in edge-thickness on the developed machine. The thinned wheel-tool is then directly positioned on the mould steel to generate multiple microgrooves on-line. A technique called High Speed and Fast-Shallow Grinding (HSFSG), which utilizes a very high machining speed, a fast feed rate, and shallow depth grinding, is employed to effectively generate precise microgrooves of high integrity. Experimental results show that the width of the grooves in the array is 8 um and a surface finish of Ra equal to 10 nm is simultaneously achieved on the mould steel. The wheel-tool fabrication and microgroove generation are carried out on the same machine, decreasing vibration occurring and guaranteeing machining accuracy. In addition, the sharpness of grinding edge of boron-doped PCD can be kept for a long time. Due to a very shallow grinding depth used results in cold machining. This can prompt diamond grain working at SP3 bond structure, reduce the affinity between iron and carbon atoms and then retard the tool wear as a result of cold processing although the grinding object is carbon steel. The surface of the chip mould is then directly polished to remove the burrs at the microgrooves after switching to the vertical polishing tool. The finished chip mould has been successfully employed to fabricate the biochip by micro injection and then it is used to the clinical trial stage. This study demonstrates that the tabletop dual-spindle ultra precision CNC machine tool has been successfully developed and the micro technologies can be really utilized to the fabrication of biomedical chip mould. It is expected that the technique will contribute significantly to the bio-medical field.

    中文摘要 V Abstract VI 目 錄 VII 圖目錄 X 表目錄 XVI 符號說明 XVIII 第一章 緒論 1 1-1 前言 1 1-2 研究動機 2 1-3 研究目的 3 1-4 研究方法 4 1-5 文獻回顧 5 1-5-1 精微工具機發展之文獻回顧 6 1-5-2 含硼聚晶鑽石應用文獻回顧 9 1-5-3 微溝槽加工技術文獻回顧 11 第二章 精微模具常用之微製造技術原理 20 2-1 精微放電加工原理 20 2-1-1 精微放電加工特性 20 2-1-2 線式放電研削原理 22 2-2 研削原理 23 2-2-1 研削基本原理 23 2-2-2 研削之延性材料移除機制 24 2-2-3 研削之脆性材料移除機制 25 2-2-4 高速快淺研削原理 26 2-3 精微拋光原理 28 2-3-1 精微拋光基本原理 28 2-3-2 精微拋光移除機制 29 2-3-3 精微拋光應用 30 2-4 精微工具機設計原理 31 2-4-1 精微工具機之控制系統設計 32 2-4-2 本研究之伺服系統控制 32 第三章 實驗所需設備 34 3-1 高速主軸選用與導電迴路設計 34 3-2 立式綜合加工機應用 35 3-3 線切割放電加工機應用 36 3-4 精微射出成型機應用 37 3-5 實驗所用之量測儀器設備 38 3-5-1 工具顯微鏡 38 3-5-2 掃描式電子顯微鏡 38 3-5-3 雷射掃描式共軛焦顯微鏡 39 3-5-4 分散式拉曼光譜儀 40 3-5-5 顯微鏡 40 3-6 實驗所用材料 41 3-6-1 含硼聚晶鑽石基材 41 3-6-2 銅線電極 42 3-6-3 拋光用鑽石膏 42 3-6-4 NAK80模具鋼 43 3-6-5 矽晶圓片 44 3-6-6 光學玻璃 44 第四章 實驗方法 45 4-1 桌上型雙主軸超精微CNC工具機設計與建構 46 4-1-1 精密機構設計與承載分析 48 4-1-2 雙主軸設計與即時檢測系統建構 53 4-1-3 多功式工作槽設計 56 4-1-4 零組件加工組裝與精度校正 57 4-1-5 人機介面開發 59 4-1-6 雙主軸工具機之振動分析 60 4-2 含硼聚晶鑽石輪刀之線上開發 65 4-2-1 含硼聚晶鑽石輪刀之高精密心軸設計 66 4-2-2 含硼聚晶鑽石輪刀胚料放電成型實驗 66 (1) 含硼聚晶鑽石之線切割線張力控制 67 (2) 含硼聚晶鑽石輪刀之削正(Truing) 70 (3) 含硼聚晶鑽石輪刀之削銳(Dressing) 71 (4) 含硼聚晶鑽石輪刀之表面型貌與變質層探討 72 (5) 結果與討論 76 第五章 細胞鏡檢晶片模仁陣列微溝研削 77 5-1 含硼聚晶鑽石輪刀於NAK80模具鋼之微溝研削 77 5-1-1 實體輪刀與缺口輪刀之研削品質比較 78 5-1-2 輪刀研削路徑之影響 80 5-1-3 微溝成型之研削速度影響 83 5-1-4 微溝成型之進給速度影響 85 5-1-5 微溝成型研削之每道切深影響 88 5-1-6 微溝成型研削之切削液使用影響 92 5-1-7 聚晶鑽石輪刀磨耗率探討 94 5-1-8 聚晶鑽石輪刀研削後的石墨化變質層探討 98 5-2 細胞鏡檢晶片模仁之線上精拋 99 5-2-1 陣列微溝之線上精拋實驗 100 5-2-2 陣列十字微溝交界之毛邊移除 102 5-3 細胞鏡檢晶片射出成型 103 5-3-1 微射出成型相關條件 105 5-3-2 尿沉渣細胞鏡檢晶片之臨床實驗 108 5-4 硬脆材料之微溝成型研削實驗 109 5-4-1 矽晶圓陣列微溝研削實驗 109 5-4-2 光學玻璃陣列微溝成型研削實驗 110 第六章 結論 112 6-1 結果 112 6-2 未來展望 114 參考文獻 116 個人簡歷 126 附註: 已發表論文 127

    1. 謝慶堂、丁志明、揚智輝、鐘振桂,“微機電封裝技術之簡介”,工業材料雜誌:193期,民92,第175頁。
    2. J. S. Lee, D. W. Lee, Y. H. Jung, W. S. Chung, "Brittle–ductile transition in the diamond cutting of glasses with the aid of ultrasonic vibration", Journal of Materials Processing Technology, Vol. 121, pp. 243-251, 2002
    3. 詹前疆,“產業調查與技術”,微機電系統,民90,第87至102頁。
    4. K. Matsumaru, A. Takata, K. Ishizaki, "Advanced thin dicing blade for sapphire substrate", Science and Technology of Advanced Materials, Vol. 6, pp. 120-122, 2005
    5. I. H. Cho, S. C. Jeong, J. M. Park, H. D. Jeong, "The application of micro-groove machining for the mold of PDP barrier ribs", Journal of Materials Processing Technology, Vol. 113, pp. 355-359, 2001
    6. S. B. Lee, Y. Tani, T. Enomoto, H. Sato, "Development of a dicing blade with photopolymerizable resins for improving machinability", CIRP Annals Manufacturing Technology, Vol. 54, pp. 293-296, 2005
    7. E. Kussul,T. Baidyk, L.R. Huerta, A.C. Ruiz, G. Velasco, L. Kasatkina, "Development of micro machine tool prototype for micro factories", Journal of Micromechanics and Microengineering,Vol. 12, pp.795-812, 2002
    8. S. K. Lee, K. K. Yoon, K. H. Whang, S. J. Na, "Excimer laser ablation removal of thin chromium from glass substrates", Surface and Coatings Technology, Vol. 113, pp. 63-74, 1999
    9. A. A. Tseng, Y. T.Chen, C. L. Chao, K. J. Ma, T. P. Chen, "Recent developments on microablation of glass materials using excimer lasers", Optics and Lasers in Engineering, Vol. 47, pp. 975-992, 2007
    10. 楊啟榮、強玲英、黃奇聲,“微系統LIGA製程之精密電鑄技術”,科儀新知,民89,第22頁。
    11. D. Huo, K. Cheng, " Development of the UMAC-Based Control System with Application to 5-Axis Ultraprecision Micromilling Machines", Brunel University, A thesis submitted for the degree of Doctor of Philosophy, 2010
    12. 瑞士SARIX:http://www.sarix.com/3Dmilling_e.htm
    13. 日本Sodick:http://www.sodick.com
    14. 日本Takashima:http://www.takashima.co.jp/kouki4-9.htm
    15. Y. S. Liao, S. T. Chen, C. S. Lin, "Development of a high precision tabletop versatile CNC Wire-EDM for making intricate micro parts", Journal of Micromechanics and Microengineering, Vol. 15, pp. 245-253, 2005
    16. A.G. Phillip, S.G. Kapoor, R.E. DeVor, "A new acceleration-based methodology for micro/meso-scale machine tool performance evaluation", Journal of Machine Tools and Manufacture, Vol.46, 2006, pp.1435-1444
    17. D. A. Axinte, S. Abdul Shukor, A. T. Bozdana, "An analysis of the functional capability of an in-house developed miniature 4-axis machine tool", International Journal of Machine Tools & Manufacture, Vol. 50, pp. 191-203, 2010
    18. X. Cheng, K. Nakamoto, M. Sugai, S. Matsumoto, Z.G. Wang, K. Yamazaki, " Development of ultra-precision machining system with unique wire EDM tool fabrication system for micro/nano-machining", CIRP Annals-Manufacturing Technology, Vol. 57, pp. 415-420, 2008
    19. Z.G. Wang, X. Cheng, K. Nakamoto, S. kobayashi, K. Yamazaki, "Design and development of a precision machine tool using counter motion mechanisms", International journal of machine tool & manufacture, Vol. 50, pp. 357-365, 2010
    20. S. T. Chen, H. Y. Yang, "Development of a multi-functional high-precision miniature machine tool", The International Conference on Advances in Materials and Processing Technologies, Paris, France, 2010
    21. A.C. Ruiz, L.R. Huerta, T. Baidyk, E. Kussul, "Geometrical error analysis of a CNC micro-machine tool", Mechatronics, Vol. 17, pp. 231-243, 2007
    22. J.C. Aurich, J. Engmann, G.M. Schueler, R. Haberland, "Micro grinding tool for manufacture of complex structures in brittle materials", CIRP Annals- Manufacturing Technology, Vol. 58, pp. 311-314, 2009
    23. Z. Wang, B. Zhu, G. Cao, "Fabricating microelectrode by electrochemical micro machining", Proceedings of SPIE, Vol.6041, pp.1-5, 2006
    24. E. Mah´e, D. Devilliers, Ch. Comninellis, "Electrochemical reactivity at graphitic micro-domains on polycrystalline boron doped diamond thin-films electrodes", Electrochimica Acta, Vol. 50, pp. 2263-2277, 2005
    25. V.A. Sidorov, E.A. Ekimov, E.D. Bauer, N.N. Mel’nik, N.J. Curro, V. Fritsch,J.D. Thompson, S.M. Stishov, A.E. Alexenko, B.V. Spitsyn, "Superconductivity in boron-doped diamond", Diamond & Related Materials , Vol. 14, pp. 334-339, 2005
    26. K. Suzuki, Y. Shiraishi, N. Nakajima, M. Iwai, S. Ninomiya, Y. Tanaka, T. Uematsu, "Development of New PCD Made Up of Boron Doped Diamond Particles and its Machinability by EDM", Advanced Materials Research, Vol. 76-78, pp. 684-689, 2009
    27. J. Y. Cheng, C. W. Wei, K. H. Hsu, T. H. Young, "Direct-write laser micromachining and universal surface modification of PMMA for device development", Sensors and Actuators B: Chemical, Vol. 99, pp. 186-196, 2004
    28. T. Rudolph, K. Zimmer, T. Betz, " Microstructuring of UV-transparent functionalised films on glass by excimer laser irradiation", Materials Science and Engineering, Vol. 26, pp. 1131-1135, 2006
    29. Th. Schaller, L. Bohn, J. Mayer, K. Schubert, "Microstructure grooves with a width of less than 50μm cut with ground metal micro wnd mills", Precision Engineering, Vol. 23, pp. 229-235, 1999
    30. C. L. Kuo, J. D. Huang, "Fabrication of series-pattern micro multi-disk and its application to cut micro slit with width as low 10μm", IEEE/ASME International Conference on Advanced Manufacturing Technologies and Education, Vol. 27, pp. 154-156, 2002
    31. S. H. Yeo, M. Murali, "A new technique using foil electrodes for the electro-discharge machining of micro grooves", Journal of Micromechanics and Microengineering, Vol. 13, pp. 1-5, 2003
    32. C. J. Morgan, R. R. Vallance, E. R. Marsh, "Micro machining glass with polycrystalline diamond tools shaped by micro electro discharge machining", Journal of Micromechanics and Microengineering, Vol. 14, pp. 1687, 2004
    33. 陳栢東,“以線放電加工在微細槽模具製程探討”,國立中興大學機械工程學系,博士論文,民93,第69至79頁。
    34. S. Nikumba, Q. Chen, C. Li, H. Reshef, H. Y. Zheng, H. Qiu, D. Low, "Precision glass machining, drilling and profile cutting by short pulse lasers", Thin Solid Films, Vol. 477, pp. 216-221, 2005
    35. B. H. Kim, C. W. Na, Y. S. Lee, D. K. Choi, C. N. Chu, "Micro Electrochemical Machining of 3D Micro Structure Using Dilute Sulfuric Acid", CIRP Annals- Manufacturing Technology, Vol. 54, pp. 191-194, 2005
    36. G. D. Kim, B. G. Loh, "An ultrasonic elliptical vibration cutting device for micro V-groove machining: Kinematical analysis and micro V-groove machining characteristics", Journal of Materials Processing Technology, Vol. 190, pp. 181-188, 2007
    37. C. Evans, "Cryogenic Diamond Turning of Stainless Steel", Annals of the CIRP, Vol. 40, pp. 571-575, 1991
    38. S. T. Chen, C. C. Liu, Y. C. Lai, Y. L. Pai, "Development of Micro Formed Grinding Tool using Compound Processes", Proceedings of the 24th National Conference on Mechanical Engineering, Chung-Li, Taiwan, pp. 4687-4692, 2007
    39. K. Suzuki, S. Sano, W. Pan, M. Iwai, S. Ninomiya, T. Uematsu, " Precise profile forming by combining EDM and grinding with the same PCD tool", DIAMOND TOOLING JOURNAL, Vol. 70, pp. 36-38, 2010
    40. H.K. Park, H. Onikura, O. Ohnishi, A. Sharifuddin, "Development of micro-diamond tools through electroless composite plating and investigation into micro-machining characteristics", Precision Engineering, Vol. 34, pp. 376-386, 2010
    41. C.J. Hayden, C. Dalton, "Direct patterning of microelectrode arrays using femtosecond laser micromachining", Applied Surface Science, Vol. 246, pp. 3761-3766, 2010
    42. S. T. Chen, Y. C. Lai, "Development of a novel custom micro-tool for effective cutting of a precision microgroove array on a microscope slide", Journal of Micromechanics and Microengineering, Vol. 21, pp. 35020-35028, 2011
    43. 廖運炫,“放電加工之發展趨勢與研究現況”,機械月刊:301期,民98,第374至387頁。
    44. D. Y. Sheu¸T. Masuzawa, "Development of Large-Scale Production of Microholes by EDM Proceedings", Bilbao, SPAIN, Proceedings of the 13th International Symposium for electromachining isem XIII, May 9th-11th, pp. 4, 2001
    45. 機械技術雜誌編輯部,“二十一世紀的顯學微機電系統(四)-微放電精密加工”,機械技術雜誌,民89,第220至222頁。
    46. T. Masuzawa, M. Fujino, K. Kobayashi, T. Suzuki, N. Kinoshita, "Wire Electro Discharge Grinding for Micro Machining", CIRP Annals-Manufacturing Technology, Vol. 34, pp. 431-434, 1985
    47. 庄司克雄,“超精密加工と非球面加工”,NTS,ISBN4-8043-059-X C3050,民93。
    48. 賴運正,“精微超硬研削工具線上開發與應用”,國立臺灣師範大學機電科技學系,碩士論文,民99,第21至22頁。
    49. M. Miyashita, "Ist Annual Precision Engineering Conference, North Carolina State University, Raleigh", NC, November 1985
    50. S. Blackeley, R. O. Scattergood, "Mechanics of material removal in diamond turning", Proceedings of ASPE Annual Meeting, Rochester NY, USA, pp. 68-71, 1990
    51. V. C. Venkatesh, I. Inasaki, H. K. Toenshoff, T. Nakagawa, I. D. Marinescu, "Observations on polishing and ultra-precision machining of semiconductor substrate materials", Annals CIRP, Vol. 44, pp. 611-618, 1995
    52. T. Nakasuji, S. Kodera, S. Hara, H. Matsunaga, N. Ikawa, S. Shimada, "Diamond turning of brittle materials for optical components", Annals CIRP, Vol. 39, pp. 89-92, 1990
    53. B. K. A. Ngoi, P. S. Sreejith, "Ductile Regime Finish Machining-A Review", Int J Adv Manuf Technol, Vol. 16, pp. 547-550, 2000.
    54. K. Ramesh, H. Huang, L. Yin, J. Zhao, "Microgrinding of deep micro grooves with high table reversal speed", International Journal of Machine Tools & Manufacture, Vol. 44, 2004, pp. 39-49, 2004
    55. 龔肇鑄,“機械製造”,復興書局,民國71,第383至386頁。
    56. 佐久間敬三,齋藤勝政,松尾哲夫,“機械工作法”,朝倉書店,民86,第130至132頁。
    57. 王建榮、林必窕、林慶福編譯,“半導體平坦化CMP技術”, 台北市:全華科技圖書股份有限公司, 民89,第4至14頁。
    58. J.C. Aurich, D. Dornfeld, P.J. Arrazola, V. Franke, L. Leitz, S. Min, "Burrs-Analysis, control and removal", CIRP Annals-anufacturing Technology, Vol. 58, pp. 519-542, 2009
    59. 黃忠良,“新工具母機要素與控制”,台南市:復漢出版社, 民86,第2至3頁。
    60. AEROTECH inc., "THE UNIDEX 500 MOTION CONTROLLER AND WINDOWS SOFTWARE", OPERATION & TECHNICAL MANUAL, Version 1.3, pp.6-1, 2000
    61. NSK:http://www.nsk-nakanishi.co.jp
    62. 台中精機:http://www.or.com.tw
    63. 佐久間敬三、吉田嘉太郎、齋藤勝政、鈴木裕,“工作機械 要素と制御”,コロナ社, 民81,第180至181頁。
    64. 慶鴻:http://chmer.com
    65. 義展機械股份有限公司:http://www.year-chance.com.tw
    66. AIXON漢磊精密科技有限公司:http://www.aixon.com.tw
    67. JEOL USA Inc. :http://www.jeolusa.com
    68. KEYENCE Corporation:http://www.digitalmicroscope.com
    69. HORIBA Scientific:http://www.horiba.com
    70. Olympas:http://www.olympus.com
    71. 宋健民,“鑽石合成”,台北市:全華科技圖書股份有限公司,民89,第2-6至2-9頁。
    72. 元祥金屬工業股份有限公司:http://www.yhm.com.tw
    73. 台灣安普產品有限公司:http://ampul.sg1001.myweb.hinet.net
    74. 天文大同特殊鋼股份有限公司:http://www.daidosteel.com.tw
    75. MatWeb:http://www.matweb.com
    76. 郭鴻賓,“玻璃工程”,徐氏基金會出版,民59,第6至9頁。
    77. D. Huo, K. Cheng, F. Wardle, "A holistic integrated dynamic design and modelling approach applied to the development of ultraprecision micro-milling machines", International Journal of Machine Tools & Manufacture, Vol. 50, pp.335-343, 2010
    78. 張懋桂,“凸台式定量細胞計數盤”,中華民國新型專利,No.00587694
    79. Chang, Mao-kuei, "Quantitative cell-counting slide for simultaneously satisfying multiple volumetric units", United States Patent, No. US6974692B2
    80. G. B. V. Kumar, C. S. P. Rao, N. Selvaraj, M. S. Bhagyashekar, "Studies on Al6061-SiC and Al7075-Al2O3 Metal Matrix Composites", Journal of Minerals and Materials Characterization and Engineering, Vol. 9, pp.43-55, 2010
    81. J. Qian, C. Pantea, J. Huang, T.W. Zerda, Y. Zhao, "Graphitization of diamond powders of different sizes at high pressure-high temperature", Carbon, Vol. 42, pp. 2691-2697, 2004
    82. S. S. M. Tavares, P. D. Pedroza, J. R. Teodosio, T. Gurova, "Mechanical properties of a quenched and tempered dual phase steel", Scripta Materialia, Vol. 40, pp.887-892, 1999
    83. S. T. Chen, S. J. Lin, "Study of an on-line precision microgroove generating process on silicon wafer using a developed ultra-thin diamond wheel-tool", Diamond & Related Materials, Vol. 20, pp. 339-342, 2011
    84. K. Okano, Y. Akiba, T. Kurosu, M. Iida, "Terutaro Nakamura, Synthesis of B-doped diamond film, Journal of Crystal Growth", Vol. 99, pp. 1192-1195, 1990
    85. W. Zhang, Y. Yang, B. Hu, L. Han, G. Chen, "Time-dependent photoconductive properties of polycrystalline diamond films with different boron concentration", Materials Letters, Vol.25 , pp.17-20, 1995
    86. V. P. Astakhov and J. P. Davim, "Tools (geometry and material) and tool wear", Chapter 2, Machining: Fundamentals and Recent Advances, Springer, London, ISBN: 978-1-84800-212-8, pp37-38, 2008
    87. A. Erden, B. Kaftanoglu, "Thermo-mathematical modelling and optimization of energy pulse forms in Electric Discharge Machining (EDM) ", International Journal of Machine Tool Design and Research, Vol. 21 , pp.11-22, 1981
    88. 涂誌賢、鄭嘉良,“奈米導彈 - 奈米鑽石的生醫應用”,物理雙月刊,民99,第97至104頁。
    89. C. L. Cheng, C. T. Chia, C. C. Chiu, I. N. Lin, "Time-dependent in-situ Raman observation of atomic hydrogen etching on diamond-like carbon films", Diamond & Related Materials Vol. 11, pp. 262-267, 2002
    90. M. Fhaner, H. Zhao, X. Bian, J. J. Galligan, G. M. Swain, "Improvements in the formation of boron-doped diamond coatings on platinum wires using the novel nucleation process (NNP) ", Diamond & Related Materials, Vol.20 , pp.75-83, 2011
    91. 童文俊,“碳滑板材料石墨化度XRD和Raman光譜研究” ,材料報導網刊,民95,第52至54頁。
    92. Y. Chen, L.C. Zhang, J.A. Arsecularatne, "Polishing of polycrystalline diamond by the technique of dynamic friction. Part 2: Material removal mechanism", International Journal of Machine Tools & Manufacture, Vol. 47, pp.1615-1624, 2007
    93. 奧山繁樹,“鑽石刀具對超硬合金(WC)的切削加工”,磨粒加工學會年會暨加工技術研討會,民98,第84至85頁。
    94. M. C. Shaw, "Metal cutting principles", pp. 179-184, 2005
    95. W. Z. Shao, V. V. Ivanov, L. Zhen, Y. S. Cui, Y. Wang, "A study on graphitization of diamond in copper–diamond composite materials", Materials Letters, Vol. 58, pp.146-149, 2003
    96. G. Davies, T. Evans, "Graphitizationof diamond at zero pressure and at a high pressure", Proc. B. Soc. Lond., Vol. 328, pp.413-427, 1972
    97. J. Qian, C. Pantea, J. Huang, T.W. Zerda, Y. Zhao, "Graphitization of diamond powders of different sizes at high pressure–high temperature", Carbon, Vol. 42, pp.2691-2697, 2004
    98. I. N. Tansel, T. T. Arkan, W. Y. Bao, N. Mahendrakar, B. Shisler, D. Smith, M. McCool, "Tool wear estimation in micro-machining. Part I: tool usage–cutting force relationship", International Journal of Machine Tools & Manufacture, Vol. 40, pp.599-608, 2000
    99. A. Bródka, T.W. Zerda, A. Burian, "Graphitization of small diamond cluster-Molecular dynamics simulation", Diamond & Related Materials, Vol. 15, pp.1818-1821, 2006
    100. E. Paul, C. J. Evans, A. Mangamelli, M. L. McGlauflin, R. S. Polvani, "Chemical aspects of tool wear in single point diamond turning", Precision Engineering, Vol. 18, pp.4-19, 1996

    下載圖示
    QR CODE