研究生: |
林琮翔 Tsung-Hsiang, Lin |
---|---|
論文名稱: |
甲醇與雙官能基分子在Ge(100)表面上的吸附與熱分解反應 Adsorption and Thermal Reactions of Methanol and Bifunctional Molecules on Ge(100) |
指導教授: |
洪偉修
Hung, Wei-Hsiu |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 中文 |
論文頁數: | 83 |
中文關鍵詞: | 鍺 、甲醇 、1,2-乙二硫醇 、2-巰基乙醇 、1,2-乙二醇 |
英文關鍵詞: | Ge, methanol, 1,2-ethanedithiol, 2-mercaptoethanol, 1,2-ethanediol |
論文種類: | 學術論文 |
相關次數: | 點閱:344 下載:1 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
利用程溫脫附質譜儀 (TPD) 及X光光電子能譜 (XPS) 來研究甲醇 (CH3OH) 與雙官能基分子 (1,2-乙二硫醇、2-巰基乙醇及1,2-乙二醇) 在Ge(100)表面上的吸附與熱分解反應。
在100 K時,甲醇曝露到Ge (100)表面,部分分子會斷氧氫鍵形成表面甲基氧與表面氫,而其餘分子則以甲醇分子吸附在表面上。而甲醇在鍺表面上的熱分解產物為H2、HCHO及CH3OH。當溫度升至300 K時,表面上的甲醇分子會有兩個競爭反應,一是直接從表面上脫附,另一則是斷氧氫鍵形成表面甲基氧與表面氫。當曝露量低時,表面甲基氧在470 K會藉由氫裂解形成甲醛,隨著升溫進而脫附;而曝露量較高時,表面甲基氧在530 K時會有兩個競爭反應,一部分與表面氫再結合形成甲醇分子脫附,另一部分則是經由氫裂解形成甲醛脫附。
為了比較醇與硫醇官能基的差異,我們選擇具有雙官能基分子 (1,2-乙二硫醇、2-巰基乙醇及1,2-乙二醇) 來研究。其中,1,2-乙二硫醇及2-巰基乙醇在高溫時皆會藉由斷裂碳氧鍵或碳硫鍵進而產生乙烯,2-巰基乙醇則有部分碳氧鍵未斷形成乙醛;相較之下1,2-乙二醇則是以相似於甲醇的方式進行氫裂解形成乙雙醛。此篇論文是針對上述化合物在Ge (100)表面的反應機制加以探討。
The adsorptions and thermal reactions of methanol (CH3OH) and bifunctional molecules (HSC2H4SH, HSC2H4OH, and HOC2H4OH) on Ge(100) surface were investigated with temperature-programmed desorption (TPD) and X-ray photoelectron spectroscopy (XPS). The desorption products of thermal reactions could be measured by TPD, and the XPS was ulitized to identify the surface species.
Adsorption of methanol on Ge(100) at 100 K results in the partial methanol forming surface OCH3 and surface H, other methanol directly adsorb on the surface. The desorption products of thermal decomposition were H2, HCHO, and CH3OH. The methanol molecules proceed two competitive reactions : the methanol directly desorbs from the surface , and forms surface OCH3 and surface H via the breaking of O-H bond. When low coverage, formaldehyde is produced due to the hydrogen elimination of surface OCH3 at 470 K, and desorbs with the increasing of temperature. While the coverage is high, the formation of formaldehyde via the hydrogen elimination competes with the formation of methanol due to the recombination of surface OCH3 and H at 530 K.
In order to compare the two functional groups (OH and SH) , we investigate the ethane molecule of bifunctional groups, 1,2-ethanedithiol, 2-mercaptoethanol, and 1,2-ethanediol. The thermal reactions of 1,2-ethanedithiol and 2-mercaptoethanol produce ethene via the breaking of C-S and C-O bonds respectively. While the minor 2-mercaptoethanol does not break C-O bond, and form acetaldehyde. In contrast, the thermal reaction of 1,2-ethanediol produces ethanedial via the hydrogen elimination similar to the case of methanol. The thermal reaction mechanisms of the above compounds on Ge(100) are studied and discussed in this dissertation.
1 Gupta, R. et al. Formation of SiGe nanocrystals in HfO2 using in situ chemical vapor deposition for memory applications. Appl. Phys. Lett. 84, 4331-4333, doi:10.1063/1.1758297 (2004).
2 Lee, M. L. et al. Strained Ge channel p-type metal-oxide-semiconductor field-effect transistors grown on Si1-xGex/Si virtual substrates. Appl. Phys. Lett. 79, 3344-3346 (2001).
3 Chi On, C., Ramanathan, S., Triplett, B. B., McIntyre, P. C. & Saraswat, K. C. Germanium MOS capacitors incorporating ultrathin high-κ gate dielectric. Electron Device Letters, IEEE 23, 473-475 (2002).
4 Zandvliet, H. J. W. The Ge(0 0 1) surface. Physics Reports 388, 1-40, doi:DOI: 10.1016/j.physrep.2003.09.001 (2003).
5 Kevan, S. D. Surface states and reconstruction on Ge(001). Phys. Rev. B 32, 2344 (1985).
6 Culbertson, R. J., Kuk, Y. & Feldman, L. C. Subsurface strain in the Ge(001) and Ge(111) surfaces and comparison to silicon. Surf. Sci. 167, 127-140, doi:10.1016/0039-6028(86)90789-2 (1986).
7 Lambert, W. R., Trevor, P. L., Cardillo, M. J., Sakai, A. & Hamann, D. R. Surface structure of Ge(100) studied by He diffraction. Phys. Rev. B 35, 8055 (1987).
8 Love, J. C., Estroff, L. A., Kriebel, J. K., Nuzzo, R. G. & Whitesides, G. M. Self-Assembled Monolayers of Thiolates on Metals as a Form of Nanotechnology. Chem. Rev. 105, 1103-1170, doi:10.1021/cr0300789 (2005).
9 He, J., Lu, Z.-H., Mitchell, S. A. & Wayner, D. D. M. Self-Assembly of Alkyl Monolayers on Ge(111)1a. J. Am. Chem. Soc. 120, 2660-2661, doi:10.1021/ja974119s (1998).
10 Lu, Z. H. Air-stable Cl-terminated Ge(111). Appl. Phys. Lett. 68, 520 - 522, doi:10.1063/1.116386 (1996).
11 Weser, T. et al. Chemisorption of sulfur on Ge(100). Surf. Sci. 201, 245-256, doi:10.1016/0039-6028(88)90609-7 (1988).
12 Weser, T. et al. Photoemission surface core-level study of sulfur adsorption on Ge(100). Phys. Rev. B 35, 8184 (1987).
13 Han, S. M., Ashurst, W. R., Carraro, C. & Maboudian, R. Formation of Alkanethiol Monolayer on Ge(111). J. Am. Chem. Soc. 123, 2422-2425, doi:10.1021/ja993816c (2001).
14 Hohman, J. N. et al. Simple, robust molecular self-assembly on germanium. Chemical Science 2, 1334-1343 (2011).
15 Bae, S. S. et al. Dissociative chemisorption of methanol on Ge(100). J. Phys. Chem. C 111, 15013-15019, doi:10.1021/jp073656o (2007).
16 Shannon, C. & Campion, A. RAMAN-SPECTROSCOPIC INVESTIGATION OF THE ADSORPTION OF ACETONITRILE AND METHANOL ON SI(100)-2X1. Surf. Sci. 227, 219-223 (1990).
17 Kleint, C. & Elhalim, S. M. A. REFLECTION ELECTRON-ENERGY LOSS SPECTROSCOPY AS A TOOL FOR BULK AND ADSORBATE STUDIES - APPLICATION TO SILICON SURFACES. Surf. Sci. 247, 375-388 (1991).
18 Ehrley, W., Butz, R. & Mantl, S. EXTERNAL INFRARED REFLECTION ABSORPTION-SPECTROSCOPY OF METHANOL ON AN EPITAXIALLY GROWN SI(100)2X1 SURFACE. Surf. Sci. 248, 193-200 (1991).
19 Glass, J. A., Wovchko, E. A. & Yates, J. T. REACTION OF METHANOL WITH POROUS SILICON. Surf. Sci. 338, 125-137 (1995).
20 Lu, X., Zhang, Q. & Lin, M. C. Adsorption of methanol, formaldehyde and formic acid on the Si(100)-2x1 surface: A computational study. Phys. Chem. Chem. Phys. 3, 2156-2161 (2001).
21 Kato, T., Kang, S. Y., Xu, X. & Yamabe, T. Possible dissociative adsorption of CH3OH and CH3NH2 on Si(100)-2 x 1 surface. J. Phys. Chem. B 105, 10340-10347 (2001).
22 Casaletto, M. P. et al. Methanol adsorption on Si(100)2 x 1 investigated by high-resolution photoemission. Surf. Sci. 505, 251-259 (2002).
23 Zhang, L. H., Carman, A. J. & Casey, S. M. Adsorption and thermal decomposition chemistry of 1-propanol and other primary alcohols on the Si(100) surface. J. Phys. Chem. B 107, 8424-8432, doi:10.1021/jp021942o (2003).
24 Miotto, R., Srivastava, G. P. & Ferraz, A. C. Methanol adsorption on silicon (001). Surf. Sci. 575, 287-299, doi:10.1016/j.susc.2004.11.041 (2005).
25 Lim, C. W., Soon, J. M., Ma, N. L., Chen, W. & Loh, K. P. High resolution electron energy loss spectroscopy study of clean, air-exposed and methanol-dosed Ge(100) surface. Surf. Sci. 575, 51-59, doi:10.1016/j.susc.2004.11.002 (2005).
26 Kim, D. H., Bae, S. S., Hong, S. & Kim, S. Atomic and electronic structure of methanol on Ge(100). Surf. Sci. 604, 129-135, doi:10.1016/j.susc.2009.10.030 (2010).
27 Filler, M. A. & Bent, S. F. The surface as molecular reagent: organic chemistry at the semiconductor interface. Prog. Surf. Sci. 73, 1-56, doi:10.1016/s0079-6816(03)00035-2 (2003).
28 DiBenedetto, S. A., Facchetti, A., Ratner, M. A. & Marks, T. J. Molecular Self-Assembled Monolayers and Multilayers for Organic and Unconventional Inorganic Thin-Film Transistor Applications. Advanced Materials 21, 1407-1433, doi:10.1002/adma.200803267 (2009).
29 Loscutoff, P. W. & Bent, S. F. Reactivity of the germanium surface: Chemical passivation and functionalization. Annu. Rev. Phys. Chem. 57, 467-495, doi:10.1146/annurev.physchem.56.092503.141307 (2006).
30 Boonstra, A. H. & Van Ruler, J. The adsorption of various gases on clean and oxidized Ge surfaces. Surf. Sci. 4, 141-149, doi:10.1016/0039-6028(66)90073-2.
31 Van Bommel, A. J. & Meyer, F. LEED measurement of H2S and H2Se adsorption on germanium (111). Surf. Sci. 6, 391-394, doi:10.1016/0039-6028(67)90096-9 (1967).
32 Anderson, G. W., Hanf, M. C., Norton, P. R., Lu, Z. H. & Graham, M. J. The S?passivation of Ge(100)?(1×1). Vol. 66 (AIP, 1995).
33 Bodlaki, D., Yamamoto, H., Waldeck, D. H. & Borguet, E. Ambient stability of chemically passivated germanium interfaces. Surf. Sci. 543, 63-74, doi:10.1016/s0039-6028(03)00958-0 (2003).
34 Hanrath, T. & Korgel, B. A. Chemical Surface Passivation of Ge Nanowires. J. Am. Chem. Soc. 126, 15466-15472, doi:10.1021/ja0465808 (2004).
35 Lyman, P. F. et al. Structure of a passivated Ge surface prepared from aqueous solution. Surf. Sci. 462, L594-L598, doi:10.1016/s0039-6028(00)00508-2 (2000).
36 Cullen, G. W., Amick, J. A. & Gerlich, D. The Stabilization of Germanium Surfaces by Ethylation. Journal of The Electrochemical Society 109, 124-127, doi:10.1149/1.2425342 (1962).
37 Schnell, R. D., Himpsel, F. J., Bogen, A., Rieger, D. & Steinmann, W. Surface core-level shifts for clean and halogen-covered Ge(100) and Ge(111). Phys. Rev. B 32, 8052 (1985).
38 Choi, K. & Buriak, J. M. Hydrogermylation of Alkenes and Alkynes on Hydride-Terminated Ge(100) Surfaces. Langmuir 16, 7737-7741, doi:10.1021/la000413d (2000).
39 Buriak, J. M. Organometallic chemistry on silicon and germanium surfaces. Chem. Rev. 102, 1271-1308, doi:10.1021/cr000064s (2002).
40 Teplyakov, A. V., Lal, P., Noah, Y. A. & Bent, S. F. Evidence for a Retro-Diels−Alder Reaction on a Single Crystalline Surface: Butadienes on Ge(100). J. Am. Chem. Soc. 120, 7377-7378, doi:10.1021/ja980243f (1998).
41 Teplyakov, A. V., Kong, M. J. & Bent, S. F. Vibrational Spectroscopic Studies of Diels−Alder Reactions with the Si(100)-2×1 Surface as a Dienophile. J. Am. Chem. Soc. 119, 11100-11101, doi:10.1021/ja972246i (1997).
42 http://www.nsrrc.org.tw/chinese/img/pdf/info.pdf.
43 Mui, C., Bent, S. F. & Musgrave, C. B. A Theoretical Study of the Structure and Thermochemistry of 1,3-Butadiene on the Ge/Si(100)-2 × 1 Surface. The Journal of Physical Chemistry A 104, 2457-2462, doi:10.1021/jp991797n (1999).
44 .Yeh., J. J. Atomic Calculation of Photoionzation Cross-Section and Asymmetry Parameters, Gordon and Breach Science. (1993).
45 Hahn, E. in Advances in Electronics and Electron Physics Vol. Volume 75 (ed W. Hawkes Peter) 233-328 (Academic Press, 1989).
46 Gasser, R. P. H. An Introduction to Chemisorption and Catalysis by Metal,Oxford University Press. (1985).
47 Surnev, L. & Tikhov, M. Comparative study of hydrogen adsorption on Ge(100) and Ge(111) surfaces. Surf. Sci. 138, 40-50, doi:10.1016/0039-6028(84)90494-1 (1984).
48 Roche, J., Ryan, P. & Hughes, G. J. Core level photoemission studies of the sulphur terminated Ge(100) surface. Appl. Surf. Sci. 174, 271-274, doi:10.1016/s0169-4332(01)00172-6 (2001).
49 Teng, T. F. et al. Adsorption and Thermal Reactions of H2O and H2S on Ge(100). J. Phys. Chem. C 114, 1019-1027, doi:10.1021/jp907791f (2010).
50 Nelen, L. M., Fuller, K. & Greenlief, C. M. Adsorption and decomposition of H2S on the Ge(100) surface. Appl. Surf. Sci. 150, 65-72, doi:10.1016/s0169-4332(99)00224-x (1999).
51 Kachian, J. S. & Bent, S. F. Adsorption Behavior of Bifunctional Molecules on Ge(100)-2 × 1: Comparison of Mercaptoethanol and Mercaptamine. The Journal of Physical Chemistry C 114, 22230-22236, doi:10.1021/jp1085894 (2010).