研究生: |
劉昀松 Liu yun-sung |
---|---|
論文名稱: |
結合多尺度主成分分析法與支持向量機在想像彩色圖像與中文文字之腦電波差異分析 Analysis the difference EEG of imaging color pictures and Chinese words via multi-scale principal component analysis and support vector machine |
指導教授: |
葉榮木
Yeh, Zong-Mu 蔡俊明 Tsai, Chun-Ming |
學位類別: |
碩士 Master |
系所名稱: |
機電工程學系 Department of Mechatronic Engineering |
論文出版年: | 2010 |
畢業學年度: | 98 |
語文別: | 中文 |
論文頁數: | 205 |
中文關鍵詞: | 腦電波 、大腦人機介面 、多尺度主成分分析法 、多貝西小波 、支持向量機 |
英文關鍵詞: | Electroencephalography, Brain–computer interface, Multi-scale principal component analysis, Daubechies wavelet, Support vector machines |
論文種類: | 學術論文 |
相關次數: | 點閱:173 下載:8 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
大腦人機介面大多以想像左手、右手、腳與吐舌等體感動作為主,然而,以想像彩色圖像和中文文字作為大腦人機介面的媒介,目前少有相關研究團隊從事這方面研究,所以本研究在此試驗性地探討想像彩色圖像和中文文字的腦電波差異,並設計適合這種認知實驗的提示,此為本研究的主要動機和貢獻。
腦電波記錄時會包含著許多雜訊,例如:市電干擾、生理雜訊…等,而且腦電波訊號具有時變、非穩態等特性,所以腦電波的「特徵擷取」以及「分類」這兩個方面一直是主要的研究課題。本研究在「特徵擷取」方面,是採用多尺度主成分分析法來分析腦電波訊號,本分析方法分為兩個階段:第一階段是利用離散小波轉換中的多貝西小波,來分解腦電波訊號變成數個子頻帶,以增加特徵數量;第二階段是用主成分分析法,來得到最顯著的特徵值及其對應的特徵向量。本研究在「分類」方面,選擇具有高度辨識率的支持向量機,使用此來分類本研究所使用的彩色圖像與中文文字兩類想像內容。實驗受測者總共有13位,實驗結果發現以受測者S4為例,分類正確辨識率可高達88.89%,而平均正確準確率可達到72.65%。本研究更進一步探討圖像-動物類和文字-非動物類這兩種差異提示想像,實驗結果發現在圖像-動物類的平均分類正確率為74.08%,而文字-非動物類的平均分類正確率則達到84.21%,顯示對大部份受測者而言,文字-非動物類的平均分類正確率比圖像-動物類的平均分類正確率高。
本研究還有歸納出P300及N400在彩色圖像及中文文字提示的電位變化關係,N400事件相關電位在370ms~520ms間會出現一個負向的波峰,在負波峰後通常會有一個低頻的負波,這是腦電波感受到新奇刺激的反應,以及大腦空間能量分佈圖能量差異較大的頻帶位於Alpha2頻帶(11-14Hz)及Beta1頻帶(14-25Hz),也就是常見的Beta頻帶。
Brain computer interface (BCI) is mostly lead to complete by motor imagery which includes left hand, right hand, foot, and tongue. However, less of related groups put effort to study about BCI based on imaging of color pictures and Chinese words. In this thesis, the pilot study discusses the differences of electroencephalogram (EEG) of imaging color pictures and Chinese words, and design suitable hints of cognitive tasks. The above description is main motivation and the designed hints are main contributions in this study.
EEG recordings contain various noises, for instance, the disturbance from electric supply, physiological artifacts, etc. At the same times, EEG is time-variant and non-stationary. According to these reasons, “feature extraction” and “classification” of EEG are the main issues in BCI regions. In “feature extraction”, this study adopted multi-scale principle component analysis (multi-scale PCA) to analyze EEG signals. The whole method in this study is divided into two steps: In the first step, a kind of discrete wavelet transform, Daubechies wavelet, is used to decompose EEG signals into several sub-bands and increase the number of feature. In the second step, multi-scale PCA is used to extract most distinguished eigen values and eigen vectors. In “classification”, support vector machine (SVM) which usually has high accuracy is used to classify EEG of imaging color pictures and Chinese words in this study. There are thirteen subjects jointed this experiment. The performance in the experiment, one of subjects, S4 has highest accuracy of classification which can be reach to 88.89%, and averaged accuracy of all subjects is 72.65%. The more advanced research in this study is to discuss two different hints of imagery task, “pictures - animals” and “words - non-animal”. The experimental results show that the averaged accuracy of “pictures - animals” hint is 74.08% and “words - non-animal” hint is 84.21%. This could give a conclusion that “words - non-animal” hint has better performance on the accuracy rate of classification.
Finally, this study also generalized the relationship of EEG potentials between P300 and N400 during hints of “color pictures” and “Chinese words”. The phenomena in this study revealed that event-related potential with N400 was the negative peak during 370ms-520ms. In general, the wave with low frequency after the negative peak could exist. This is the response reduced from EEG when subjects receive strange stimulations. At the same times, the most distinguished difference between EEG of imaging “color pictures” and “Chinese words” with power spectrum is located at Alpha2 band (11-14 Hz) and Beta1 band(14-25 Hz). It is also called Beta band in the common.
參考文獻
[1] Guest Editors, “Guest editorial the third international meeting on brain-computer interface technology: making a difference,” IEEE Trans. Rehabil. Eng., vol. 14, no. 2, pp. 126-127, 2006.
[2] F. Cincotti, L. Bianchi, G. Birch, C. Guger, J. Mellinger, R. Scherer, R. N. Schmidt, O. Y. Suárez, and G. Schalk, “BCI meeting 2005—workshop on technology: hardware and software,” IEEE Trans. Rehabil. Eng., vol. 14, no. 2, pp. 128-131, 2006.
[3] A. Kübler, V. K. Mushahwar, L. R. Hochberg, and J. P. Donoghue, “BCI meeting 2005—workshop on clinical issues and applications,” IEEE Trans. Rehabil. Eng., vol. 14, no. 2, pp. 131-134, 2006.
[4] A. Nijholt, B. Reuderink, and D. Plass-Oude Bos, “Turning shortcomings into challenges: Brain–computer interfaces for games,” Elsevier Entertainment Computing., vol. 1 pp. 85-94, 2009.
[5] A. Finke, A. Lenhardt, and H. Ritter, “The MindGame: A P300-based brain_computer interface game,” Elsevier Neural Networks., vol. 22, pp. 1329-1333, 2009.
[6] 廖宇璁,「想像幾何旋轉動作與數學心算之腦電波分析」,國立台灣師範大學機電科技學系碩士論文,2009。
[7] G. Dornhege, J. d. R. Millán, T. Hinterberger, D. J. McFarland, and K. R. Müller, “Toward brain-computer interfacing,” Cambridge, Mass.: MIT Press., 2007.
[8] S. G. Mason and G. E. Birch, “A brain-controlled switch for asynchronous control applications,” IEEE Trans. Biomed. Eng., vol. 47, no. 10, pp. 1297-1307, 2000.
[9] J. d. R. Millán and J. Mouriño, “Asynchronous BCI and local neural classifiers: an overview of the adaptive brain interface project,” IEEE Trans. Rehabil. Eng., vol. 11, no. 2, pp. 159-161, 2003.
[10] R. Caton, “The electric currents of the brain,” British Medical Journal., Vol. 2, pp. 278, 1875.
[11] H. Berger, “Über das Elektrenkephalogramm des Menschen,” European Archives of Psychiatry and Clinical Neuroscience., vol. 87, pp. 527-570, 1929.
[12] http://www.dls.ym.edu.tw/neuroscience/functional_c.htm
[13] H. Jasper, “Report of committee on methods of clinical exam in EEG,” Electroencephalogr. Clin. Neurophysiol., vol. 10, pp. 370-375, 1958.
[14] E. H. Chudler, “Neuroscience for kids,” available at the links for on-line courses at the author’s homepage at
http://faculty.washington.edu/chudler/1020.html, 1996-2008.
[15] L. Hu, B. H. Jansen, and N. N. Boutros, “Is P50 an epiphenomenon?” Proc. of 27st Annual International Conference of the IEEE EMBS., pp. 1166-1169, 2005.
[16] 李郁德,「圖象色彩組合對主觀偏好與辨識率之影響及腦波(EEG)評估」,國立台灣科技大學工業管理系碩士論文,2003。
[17] S. Sanei and J. A. Chambers, “EEG signal processing,” John Wiley & Sons, Ltd., 2007.
[18] J. Bhattacharya and H. Petsche, “Phase synchrony analysis of EEG during music perception reveals changes in functional connectivity due to musical expertise,” Signal Processing., Vol. 85, pp. 2161-2177, 2005.
[19] A. Nigam, J. E. Hoffman, and R. F. Simons, “N400 to semantically anomalous pictures and words,” Journal of Cognitive Neuroscience Massachusetts Institute of Technology., vol. 4, no. 1, pp. 15-22, 1992.
[20] J. G. Snodgrass, and M. Vanderwart, “A standardized set of 260 pictures: norms for name agreement, image agreement, familiarity, and visual Complexity,” Journal of Experimental Psychology. Human Learning and Memory., vol. 6, no. 2, pp. 174-215, 1980.
[21] M. Kiefer, “Perceptual and semantic sources of category-specific effects: Event-related potentials during picture and word categorization,” Memory & Cognition., vol. 29, no. 1, pp. 100-116, 2001.
[22] T. Harmony, T. Fernández, A. Fernández-Bouzas, J. Silva-Pereyra, J. Bosch, L. DõÂaz-Comas, and L. GalaÂn, “EEG changes during word and figure categorization,” Elsevier. Clinical Neurophysiology., vol. 112, pp. 1486-1498, 2001.
[23] Y. H. Zhang, and C. Y. Guo, “Relationship between perceptual and semantic levels of representation: An event-related potential study,” Chinese Science Bulletin., vol. 53, no. 24, pp. 3847-3859, 2008.
[24] M. Murugappan, M. Rizon, R. Nagarajan, S. Yaacob, D. Hazry, and I. Zunaidi, “Time-frequency analysis of EEG signals for human emotion detection,” Springer-Verlag Berlin Heidelberg., pp. 262-265, 2008.
[25] O. AlZoubi, I. Koprinska, and R. A. Calvo, “Classification of brain-computer interface Data,” the Seventh Australasian Data Mining
Conference., pp. 9,2008.
[26] http://www.bbci.de/competition/iii/desc_IIIa.pdf.
[27] R. C. Holte, “Very simple classification rules perform well on most commonly used datasets,” Machine Learning., vol. 11, no. 1, pp. 63-91, 1993.
[28] J. R. Quinlan, “Induction of decision trees,” Machine Learning., vol. 1, no. 1, pp. 81-106, 1986.
[29] D. W. Aha, D. Kibler, and M. K. Albert, “Instance-based learning algorithms,” Machine Learning., vol. 6, no. 1, pp. 37-66, 1991.
[30] J. Moody, and C. J. Darken, “Fast learning in networks of locally-tuned processing units,” Neural computation., vol. 1, no. 2, pp. 281-294, 1989.
[31] J. C. Platt, “Fast training of support vector machines using sequential minimal optimization,” Advances in kernel methods: support vector learning., pp. 185-208, 1999.
[32] S. Le Cessie, and J. C. Van Houwelingen, “Ridge estimators in logistic regression,” Applied Statistics., vol. 41, no. 1, pp. 191-201, 1992.
[33] Y. Freund, and R. E. Schapire, “Experiments with a new boosting algorithm,” Machine Learning: Proceedings of the Thirteenth International Conference., pp. 1-9, 1996.
[34] L. Breiman, “Bagging Predictors,” Machine Learning., vol. 24, no. 2, pp. 123-140, 1996.
[35] D. H. Wolpert, “Stacked generalization,” Elsevier. Neural networks., vol. 5, no. 2, pp. 231-259, 1992.
[36] L. Breiman, “Random Forests,” Machine Learning., vol. 45, no. 1, pp. 5-32, 2001.
[37] D. J. Krusienski, G. Schalk, J. R. Wolpaw, A. Schlögl, G. Pfurtscheller,
J. d. R. Millán, M. Schröder, and N. Birbaumer, “The BCI competition III: validating alternative approaches to actual BCI problems,” IEEE Transactions on Neural Systems and Rehabilitation Engineering., vol. 14, no. 2, pp. 153-159, 2006.
[38] J. Jin, X. Wang, and B. Wang, “Classification of direction perception EEG Based on PCA-SVM,” Third International Conference on Natural Computation., pp. 5, 2007.
[39] W. Yan, Q. Liu, H. Lu, and S. Ma, “Multiple similarities based kernel subspace learning for image classification,” Computer Vision–ACCV 2006 Springer-Verlag Berlin Heidelberg., pp. 244-253, 2006.
[40] 陳志瑋,「研究以小波神經網路作μ波即時鑑別」,國立成功大學機械工程學系碩士論文,2002。
[41] 林志穎,「數位音訊廣播系統中轉換器之電路設計」,國立成功大學電機工程學系碩士論文,2001。
[42] K. M. Sanjit, “Digital Signal Processing,” 3rd Ed., McGRAW.Hill International Edition., 2006.
[43] http://www.mathworks.com/access/helpdesk/help/pdf_doc/wavelet/wavelet_ug.pdf.
[44] D. E. Newland, “An introduction to random vibrations, spectral and wavelet analysis longman scientific & technical,” England., 1993.
[45] S. Mallat, “A theory for multiresolution signal decomposition: The Wavelet Representation,” IEEE Trans. on Pattern Analysis and
Machine Intelligence., vol. 11, no. 7, pp. 674-693, 1989.
[46] A. Grossman and J. Morlet, “Decompositions of hardy functions into square integrable wavelets of constant shape,” SIAM Journal
of Mathematical Analysis., vol. 15, no. 4, pp. 723-736, 1984.
[47] I. Daubechies, “Orthonormal based of compactly supported wavelet,” Communications in Pure Applied Math., vol. 41, no. 7, pp. 909-996, 1988.
[48] H. B. Aradhye, B. R. Bakshi, R. A. Strauss, and J. F. Davis, “Multiscale SPC using wavelets - theoretical analysis and properties,” AIChE Journal., pp. 1-41, 2003.
[49] B. R. Bakshi, “Multiscale PCA with application to multivariate statistical process monitoring,” AIChE Journal., pp. 1-18, 1998.
[50] D. L. Donoho, “De-noising by soft-thresholding,” IEEE transactions on information theory., vol. 41, no. 3, pp. 613-621, 1995.
[51] S. Yoon, and J. F. MacGregor, “Principal-component analysis of multiscale data for process monitoring and fault diagnosis,” AIChE Journal., vol. 50, no. 11, pp. 2891-2903, 2004.
[52] F. Lotte, M. Congedo, A. Lécuyer, F. Lamarche, and B. Arnaldi, “A review of classification algorithms for EEG-based brain computer interface,” Journal of Neural Engineering., vol. 4, pp. R1-R13, 2007.
[53] J. A. K. Suykens, and J. Vandewalle, “Least squares support vector machine classifiers,” Neural processing letters., vol. 9, pp. 293-300, 1999.
[54] http://www.neuroscan.com/landing.cfm
[55] 張菀珍、葉榮木、蔡俊明、劉昀松「想像幾何左右旋轉與左右手動之辨識率比較」,國立屏東教育大學資訊科學期刊,2010。
[56] P. Jahankhani, V. Kodogiannis, and K. Revett, “EEG signal classification using wavelet feature extraction and neural networks,” IEEE International Symposium on Modern Computing., pp. 1-5, 2006.
[57] C. C. Chang and C. J. Lin, “LIBSVM: a library for support vector machines,” Software available at
http://www.csie.ntu.edu.tw/~cjlin/libsvm , 2001.
[58] M. H. JOHNSON著 洪蘭譯 「發展的認知神經科學」,信誼基金出版社,2001。
[59] 吳冠徵,「大腦在察覺中、英文句法和數學邏輯錯誤的EEG頻譜振盪反應」,私立佛光大學心理學系碩士論文,2010。
[60] R. Carter著 洪蘭譯 「大腦的秘密檔案」,遠流出版社,2008。
[61] 林昆達「小波理論與類神經網路在橋樑非破壞檢測之應用」,中原大學土木工程學系碩士論文,2002。
[62] 陳柏元「應用小波轉換及人工智慧進行配電系統電容切換暫態位置之判斷」,中原大學電機工程學系碩士論文,2005。
[63] http://www.google.com.tw/imghp?hl=zh-TW&tab=wi.
[64] G. Pfurtscheller, C. Neuper, A. Schl¨ogl, and K. Lugger, “Separability of EEG signals recorded during right and left motor imagery using adaptive autoregressive parameters,” IEEE Transactions On Neural Systems And Rehabilitation Engineering., vol. 6, no. 3, pp. 316-325, 1998.
[65] C. Guger, G. Edlinger, W. Harkam, I. Niedermayer, and G. Pfurtscheller, “How many people are able to operate an EEG-based brain-computer interface (BCI)?,” IEEE Transactions On Neural Systems And Rehabilitation Engineering., vol. 11, no. 2, pp. 145-147, 2003.
[66] B. Kamousi, Z. Liu, and B. He, “Classification of motor imagery tasks for brain-computer interface applications by means of two equivalent dipoles analysis,” IEEE Transactions On Neural Systems And Rehabilitation Engineering., vol. 13, no. 2, pp. 166-171, 2005.
[67] M. Phothisonothai, and M. Nakagawa, “EEG-based classification of new imagery tasks using three-layer feedforward neural network classifier for Brain–Computer Interface,” Journal of Physical Socirty of Japan., vol. 75, no. 10, 2006.
[68] 方偉力,「以主成分分析法和線性鑑別分析法辨識想像左右手動」,國立台灣師範大學機電科技學系碩士論文,2007。