簡易檢索 / 詳目顯示

研究生: 黃珈菱
Jia-Ling Huang
論文名稱: 利用溶劑法合成二硫化鐵奈米晶體並與石墨烯混摻作為析氫觸媒之應用
Facile Synthesis of FeS2/RGO Hybrid as a Superior Efficient Electrocatalyst for Hydrogen Production
指導教授: 陳家俊
Chen, Chia-Chun
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 64
中文關鍵詞: 析氫反應電催化二硫化鐵
英文關鍵詞: hydrogen evolution reaction, electrocatalyst, Iron sulfide
論文種類: 學術論文
相關次數: 點閱:235下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

氫能是一乾淨能源,而且為最具有潛力能取代石油,成為一新穎燃料。因此,利用電解水產氫反應也越來越具有一定的重要性,成為重要的可再生能源之一。雖然像是鉑金屬之類的貴重金屬,在析氫反應中具有高效率的產氫能力,但因為貴重金屬其地球含量不多,使其成本相當高昂,難以大規模應用。因此開發新型便宜且地表上含量豐富之析氫觸媒就很重要了。
此研究中,本實驗團隊利用溶劑熱法有效的合成出不同結構之二硫化鐵奈米晶體,並且與還原態氧化石墨烯藉由超音波震盪作混合結合動作。使得二硫化鐵奈米晶體與還原態氧化石墨烯複合材料能做為一新式析氫反應之觸媒。
立方體二硫化鐵奈米晶體與還原態氧化石墨烯之複合材料比起純二硫化鐵奈米晶體與具有更良好的析氫活性。於極化曲線量測中發現,此複合材料之onset potential 約210 mV。而其Tafel slope 值約80 mV/dec。而其立方體二硫化鐵奈米晶體與還原態氧化石墨烯之複合材料之穩定性比球型及立方體二硫化鐵奈米晶體要好。並推測其立方體二硫化鐵奈米晶體與還原態氧化石墨烯之複合材料的反應機制為Volmer-Heyrovsky反應。最後,我們成功利用地球豐富且無毒性之二硫化鐵奈米晶體與還原態氧化石墨烯之複合材料當作析氫觸媒。

Hydrogen energy is clean and serves as one of the most promising candidates for replacing petroleum fuels in the future. Although the rare metals, such as platinum, have high efficiency in the hydrogen evolution reaction (HER), their scarcity and high cost inhibit large scale applications. Thus, developing new, inexpensive, and abundant HER catalysts remain challenging.
In this study, we developed a new electrocatalyst in the hydrogen evolution reaction (HER) based on hybrid of FeS2 nanocubes and reduced graphene oxide by sonication to form the FeS2 nanocubes-rGO nanocomposites. The FeS2 nanocubes-rGO hybrid exhibited superior electrocatalytic activity in the hydrogen evolution reaction (HER) than the pristine FeS2 nanocubes. The catalytic performance of FeS2 nanocubes-rGO hybrid showed a low overpotential ~ 210mV with a Tafel slope of ~80mV/decade. The ~80 mV/decade Tafel slope suggested the Volmer-Heyrovsky mechanism for the FeS2-catalyzed HER, with electrochemical desorption of hydrogen as the rate-limiting step.

總目錄 I 圖表目錄 V 摘要 X Abstract XI 第一章 緒論 1 1-1氫能源優勢 1 1-2產氫方法簡介 3 1-2-1石化燃料產氫 3 1-2-2熱化學法製氫 5 1-2-3生質能產氫 5 1-2-4光催化產氫 7 1-2-5電解水產氫 9 1-3文獻回顧 10 1-4研究動機與目的 15 第二章 理論基礎與儀器原理 16 2-1電解水基本原理 16 2-2電解水之電壓 18 2-3吉布斯自由能(Gibbs Free Energy) 19 2-4法拉第定律(Faraday’s Law) 20 2-5過電位(overpotential) 21 2-5-1活性過電位 (Activation overpotential) 21 2-5-2濃度過電位 (Mass transfer overpotential) 22 2-5-3歐姆過電位 (Ohmic overpotential) 23 2-6線性掃描伏安法 (Linear Sweep Voltammetry) 24 2-7塔弗方程式 (Tafel equation) 26 2-8X-光繞射分析儀 ( X-ray Diffraction, XRD ) 27 2-9穿透式電子顯微鏡 (Transmission Electron Microscopy, TEM ) 28 2-10掃瞄式電子顯微鏡 (Scanning Electron Microscopy, SEM ) 30 2-11拉曼光譜儀 (Raman spectrometers) 31 第三章 實驗與儀器介紹 32 3-1材料合成原理 32 3-1-1二硫化鐵(FeS2)奈米晶體合成原理 32 3-1-2氧化石墨烯(grapheme oxide) 與其還原態 (reduced grapheme oxide, rGO)合成原理 34 3-2實驗藥品與器材 36 3-2-1實驗藥品 36 3-2-2實驗器材 38 3-3樣品合成步驟 39 3-3-1球型二硫化鐵奈米晶體合成實驗步驟 39 3-3-2立方體二硫化鐵奈米晶體合成實驗步驟 40 3-3-3氧化石墨烯與其還原態實驗步驟 41 3-3-4觸媒製備 42 3-4 電化學測量事前準備 43 3-4-1電極之清洗 43 3-4-2觸媒塗佈方式 44 3-4-3電化學特性量測 44 第四章 結果與討論 45 4-1材料合成與分析 45 4-1-1球型二硫化鐵奈米晶體之製備與鑑定 45 4-1-2立方體二硫化鐵奈米晶體之製備與鑑定 48 4-1-3氧化石墨烯與其還原態製備與鑑定 51 4-1-4混合立方體二硫化鐵與還原態氧化石墨烯 54 4-2 電化學特性量測分析 56 4-2-1 二硫化鐵於線性掃描伏安法(LSV)及塔弗曲線(Tafel Plot)上之量測 56 4-2-2混摻立方體二硫化鐵與還原態氧化石墨烯於線性掃描伏安法(LSV)及塔弗曲線(Tafel Plot)上之量測 59 第五章 結論與未來展望 61 Reference 62

Reference
(1) E. Funk, J. Int. J. Hydrogen Energy 2001, 26, 185.
(2) Joensen, F.; Rostrup-Nielsen, J. R. J. Power Sources 2002, 105, 195.
(3) Hohn, K. L.; Schmidt, L. D. Appl. Catal., A 2001, 211, 53.
(4) Pino, L.; Recupero, V.; Beninati, S.; Shukla, A. K.; Hegde, M. S.; Bera, P. Appl. Catal., A 2002, 225, 63.
(5) Biniwale, R. B.; Mizuno, A.; Ichikawa, M. Appl. Catal., A 2004, 276, 169.
(6) Bromberg, L.; Cohn, D. R.; Rabinovich, A. Int. J. Hydrogen Energy 1997, 22, 83.
(7) Mutaf-yardimci, O.; Saveliev, A. V.; Fridman, A. A.; Kennedy, L. A. Int. J. Hydrogen Energy 1998, 23, 1109.
(8) Das, D.; Veziroǧlu, T. N. Int. J. Hydrogen Energy 2001, 26, 13.
(9) Chum, H. L.; Overend, R. P. Fuel Process. Technol. 2001, 71, 187.
(10) Abe, R. J. Photochem. Photobiol., C 2010, 11, 179.
(11) Jing, D.; Guo, L.; Zhao, L.; Zhang, X.; Liu, H.; Li, M.; Shen, S.; Liu, G.; Hu, X.; Zhang, X.; Zhang, K.; Ma, L.; Guo, P. Int. J. Hydrogen Energy 2010, 35, 7087.
(12) Ni, M.; Leung, M. K. H.; Leung, D. Y. C.; Sumathy, K. Renew. Sustain. Energy Rev. 2007, 11, 401.
(13) Gratzel, M. Nature 2001, 414, 338.
(14) Turner, J.; Sverdrup, G.; Mann, M. K.; Maness, P.-C.; Kroposki, B.; Ghirardi, M.; Evans, R. J.; Blake, D. Int. J. Energy Res. 2008, 32, 379.
(15) LeRoy, R. L. Int. J. Hydrogen Energy 1983, 8, 401.
(16) Janjua, M. B. I.; Le Roy, R. L. Int. J. Hydrogen Energy 1985, 10, 11.
(17) Laursen, A. B.; Varela, A. S.; Dionigi, F.; Fanchiu, H.; Miller, C.; Trinhammer, O. L.; Rossmeisl, J.; Dahl, S. J. Chem. Educ. 2012, 89, 1595.
(18) Jaramillo, T. F.; Jørgensen, K. P.; Bonde, J.; Nielsen, J. H.; Horch, S.; Chorkendorff, I. Science 2007, 317, 100.
(19) Li, Y.; Wang, H.; Xie, L.; Liang, Y.; Hong, G.; Dai, H. J. Am. Chem. Soc. 2011, 133, 7296.
(20) Merki, D.; Hu, X. Energ. Environ. Sci. 2011, 4, 3878.
(21) Hung, A.; Muscat, J.; Yarovsky, I.; Russo, S. P. Surf. Sci. 2002, 513, 511.
(22) Zeng, K.; Zhang, D. Prog. Energy Combust. Sci. 2010, 36, 307.
(23) Onda, K.; Kyakuno, T.; Hattori, K.; Ito, K. J. Power Sources 2004, 132, 64.
(24) Stankovic´, V. D.; Grujic´, R.; Wragg, A. A. J. Appl. Electrochem. 1998, 28, 321.
(25) Tran, T. D.; Langer, S. H. Anal. Chem. 1993, 65, 1805.
(26) Park, K.-W.; Kwon, B.-K.; Choi, J.-H.; Park, I.-S.; Kim, Y.-M.; Sung, Y.-E. J. Power Sources 2002, 109, 439.
(27) Bewer, T.; Beckmann, T.; Dohle, H.; Mergel, J.; Stolten, D. J. Power Sources 2004, 125, 1.
(28) Kim, J.; Lee, S. M.; Srinivasan, S.; Chamberlin, C. E. J. Electrochem. Soc. 1995, 142, 2670.
(29) Bernardi, D. M.; Verbrugge, M. W. J. Electrochem. Soc. 1992, 139, 2477.
(30) Wood Iii, D. L.; Yi, J. S.; Nguyen, T. V. Electrochim. Acta 1998, 43, 3795.
(31) Yeetsorn, R.; Fowler, M. W.; Tzoganakis, C. A Review of Thermoplastic Composites for Bipolar Plate Materials in PEM Fuel Cells, 2011.
(32) Peled, E. J. Electrochem. Soc. 1979, 126, 2047.
(33) Wilcoxon, J. P.; Newcomer, P. P.; Samara, G. A. Solid State Commun. 1996, 98, 581.
(34) Wadia, C.; Wu, Y.; Gul, S.; Volkman, S. K.; Guo, J.; Alivisatos, A. P. Chem. Mater. 2009, 21, 2568.
(35) Bausch, S.; Sailer, B.; Keppner, H.; Willeke, G.; Bucher, E.; Frommeyer, G. Appl. Phys. Lett. 1990, 57, 25.
(36) Joo, J.; Na, H. B.; Yu, T.; Yu, J. H.; Kim, Y. W.; Wu, F.; Zhang, J. Z.; Hyeon, T. J. Am. Chem. Soc. 2003, 125, 11100.
(37) Yu, W. W.; Peng, X. Angew. Chem. Int. Ed. 2002, 41, 2368.
(38) Tao, A. R.; Habas, S.; Yang, P. Small 2008, 4, 310.
(39) Li, W.; Doblinger, M.; Vaneski, A.; Rogach, A. L.; Jackel, F.; Feldmann, J. J. Mater. Chem. 2011, 21, 17946.
(40) Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Science 2004, 306, 666.
(41) Berger, C.; Song, Z.; Li, X.; Wu, X.; Brown, N.; Naud, C.; Mayou, D.; Li, T.; Hass, J.; Marchenkov, A. N.; Conrad, E. H.; First, P. N.; de Heer, W. A. Science 2006, 312, 1191.
(42) Li, X.; Cai, W.; An, J.; Kim, S.; Nah, J.; Yang, D.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E.; Banerjee, S. K.; Colombo, L.; Ruoff, R. S. Science 2009, 324, 1312.
(43) Hernandez, Y.; Nicolosi, V.; Lotya, M.; Blighe, F. M.; Sun, Z.; De, S.; McGovern, I. T.; Holland, B.; Byrne, M.; Gun'Ko, Y. K.; Boland, J. J.; Niraj, P.; Duesberg, G.; Krishnamurthy, S.; Goodhue, R.; Hutchison, J.; Scardaci, V.; Ferrari, A. C.; Coleman, J. N. Nat Nano 2008, 3, 563.
(44) Hirata, M.; Gotou, T.; Horiuchi, S.; Fujiwara, M.; Ohba, M. Carbon 2004, 42, 2929.
(45) Hummers, W. S.; Offeman, R. E. J. Am. Chem. Soc. 1958, 80, 1339.
(46) Stankovich, S.; Dikin, D. A.; Piner, R. D.; Kohlhaas, K. A.; Kleinhammes, A.; Jia, Y.; Wu, Y.; Nguyen, S. T.; Ruoff, R. S. Carbon 2007, 45, 1558.
(47) Stankovich, S.; Dikin, D. A.; Dommett, G. H. B.; Kohlhaas, K. M.; Zimney, E. J.; Stach, E. A.; Piner, R. D.; Nguyen, S. T.; Ruoff, R. S. Nature 2006, 442, 282.
(48) Bosch-Navarro, C.; Coronado, E.; Marti-Gastaldo, C.; Sanchez-Royo, J. F.; Gomez, M. G. Nanoscale 2012, 4, 3977.
(49) He, H.; Klinowski, J.; Forster, M.; Lerf, A. Chem. Phys. Lett. 1998, 287, 53.
(50) Cabán-Acevedo, M.; Faber, M. S.; Tan, Y.; Hamers, R. J.; Jin, S. Nano Lett. 2012, 12, 1977.
(51) Bi, Y.; Yuan, Y.; Exstrom, C. L.; Darveau, S. A.; Huang, J. Nano Lett. 2011, 11, 4953.

下載圖示
QR CODE