研究生: |
邱柏智 BO-JR Chiou |
---|---|
論文名稱: |
基於主成份分析法與灰關聯分析法之動態人臉辨識 Dynamic Face Recognition based on PCA and GRA |
指導教授: |
葉榮木
Yeh, Zong-Mu 蔡俊明 Tsai, Chun-Ming |
學位類別: |
碩士 Master |
系所名稱: |
機電工程學系 Department of Mechatronic Engineering |
論文出版年: | 2007 |
畢業學年度: | 95 |
語文別: | 中文 |
論文頁數: | 69 |
中文關鍵詞: | 人臉偵測 、人臉辨識 、小波轉換 、主成份分析法 、灰關聯分析法 、特徵臉 |
英文關鍵詞: | Face Detection, Face Recognition, Wavelet Transformation, Principal Component Analysis,, Grey Relational Analysis, Eigenface |
論文種類: | 學術論文 |
相關次數: | 點閱:225 下載:15 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
人臉辨識系統廣泛地應用於身分認證、門禁管理與人機界面等領域,近年來由於「智慧生活」科技的提倡,人臉辨識技術已延伸至人與機器最佳化介面之應用。此外視訊會議、影像內容檢索與醫學影像處理等方面,亦是其重要之應用領域。
本篇論文分為人臉偵測和人臉辨識兩大部分。在人臉偵測的部份,我們利用膚色分割和連通成份的方法找出人臉候選區,再使用色彩分析的方法從人臉候選區中尋找眼睛和嘴唇的特徵,最後再使用眼睛和嘴唇的幾何條件關係去定位出正確的人臉位置。在人臉辨識部分,我們提出一套結合主成份分析法與灰關聯分析法的人臉辨識方法,此方法的架構分為以下三個階段:首先,在影像前處理的階段,我們使用二維小波轉換,對輸入影像做資料壓縮的處理,接著,利用主成份分析法將壓縮過的人臉影像,投影到低維度的子空間中,計算出具有代表性的特徵臉,最後,再使用灰關聯分析法,來辨識出正確的人臉圖片。
為了驗證本篇所提出的方法,在靜態辨識實驗中,我們使用ORL人臉資料庫,做了一些分析和比較的實驗,實驗結果證明,在40人條件下,訓練樣本為五張時,可以得到91.6%的辨識率。而本篇方法在動態辨識實驗中以不同距離拍攝人臉,在30人條件下,可以得到八成以上的辨識率。
Face recognition systems have been utilized in areas such as biometric identity authentification, acess surveillance, and human-computer interface. More recently, because of the promotion of “intelligent life”, the use of face recognition techniques has been extended to optimizing the human-computer interface. In addition, video conferencing, image content indexing and medical diagnostics are other applications for face recognition.
This paper first discusses the face detection part, and then discusses the face recognition part. For the face detection part, we used skin color segmentation and connected component method to extract a face candidate. Then color analysis was used to identify the features (lips, eyes) of the face candidate. Finally, measurements related to the eyes and mouth were used to locate the position of the face.
For the face recognition part, we present a hybrid face recognition method, which combines Principal Component Analysis and Grey Relational Analysis. The proposed method consists of three stages. First, during preprocessing, we performed a Discrete Wavelet Transformation for data compression. Second, using Principal Component Analysis to project the input images into a low dimension subspace, we calculated the representative eigenface. Finally, we used Grey Relational Analysis to recognize the face images.
To confirm our proposed method, we performed static and dynamic recognition experiments for analysis and comparison. ORL face databases were used in the static recognition experiments. Our database contained 40 people, and for each person, we selected 5 training samples. Using these training samples, we obtained an accuracy rate of 91.6 percent. In dynamic recognition experiments, we were able to obtain greater than 80 percent accuracy for 30 people under different distances.
[1] R.Chellappa, C. Wilson, and S. Sirohey, “Human and machine recognition of faces: a Survey, ” in Proceedings of IEEE, vol. 83, May 1995.
[2] Matthew A. Turk, and Alex P. Pentland, “Face recognition using eigenfaces, ” IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 586 - 591, June 1991.
[3] M. Turk and A. Pentland, “ Eigenfaces for Recognition,” Journal of Cognitive Neuroscience, vol. 3, pp.71–86, 1991.
[4] Aleix M.Martinez, and Avinash C. Kak, “PCA versus LDA,” IEEE Trans on Pattern Analysis and Machine Intelligence, Vol.23, no.2, pp.228 - 233 , Feb. 2001.
[5] Juwei Lu; Plataniotis, K.N. and Venetsanopoulos, A.N “Face recognition using LDA-based algorithms,” IEEE Transactions on Neural Networks, Vol 14, pp. 195 -200, Jan. 2003.
[6] L. Chen, H. Liao, M. Ko, J. Lin and G. Yu, “A new LDA-based face recognition system which can solve the small sample size problem,” Pattern Recognition,Vol.33, pp.1713-1726, 2000.
[7] Chih-Pin Liao, Hsien-Jen Lin, Chien-Yu Hung and Jen-Tzung Chien, “A New Approach to Face Recognition with Limited Training Data,” IPPR Conference on CVGIP, pp.46 – 50, 2002.
[8] Jieping Ye and Qi Li, “A Two-Stage Linear Discriminant Analysis via
QR-Decomposition,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 27, pp. 929 - 941 ,Jun. 2005.
[9] P. N. Belhumeur, J. P. Hespanha, and D. J. Kriegman, “Eigenfaces vs. fisherfaces: Recognition using class specific linear projection,” IEEE Trans. Pattern Anal.Machine Intell., vol. 19, pp. 711–720, July 1997.
[10] Ming-Hsuan Yang, “Kernel Eigenfaces vs. Kernel Fisherfaces: Face Recognition Using Kernel Methods,” Fifth IEEE International Conference on Automatic Face and Gesture Recognition, pp. 215 - 220 ,May, 2002.
[11] Bartlett M.S., Movellan J.R. and Sejnowski T.J., “Face recognition by independent component analysis, ” Neural Networks, IEEE Transactions on, vol. 13,pp. 1450 – 1464, Nov. 2002.
[12] Nebauer C, “Evaluation of convolutional neural networks for visual recognition,”Neural Networks, IEEE Transactions on, vol. 9, pp. 685 – 696, July 1998
[13] Meng Joo Er, Shiqian Wu, Juwei Lu and Hock Lye Toh, “Face recognition with radial basis function (RBF) neural networks,” Neural Networks, IEEE Transactions on, vol. 13, pp. 697-710, May 2002.
[14] Bai-Ling Zhang, Haihong Zhang and Shuzhi Sam Ge; “Face recognition by applying wavelet subband representation and kernel associative memory,” NeuralNetworks, IEEE Transactions on, vol. 15, pp.166-177, Jan 2004.
[15] Peter McGuire and G. M. T. D’Eleuterio, “Eigenpixels and a neural-network approach to image classification,” Neural Networks, IEEE Transactions on, vol. 12, pp. 625- 635, May 2001.
[16] Safari M., Harandi M.T. and Araabi B.N., “A SVM-based method for face
recognition using a wavelet PCA representation of faces,” Image Processing, 2004.ICIP '04. 2004 International Conference on, pp. 853- 856, Oct. 2004.
[17] Krishna S. and Panchanathan, S., “A Methodology for Improving Recognition Rate of Linear Discriminant Analysis in Video-Based Face Recognition Using Support Vector Machines,” Multimedia and Expo, 2005. ICME 2005. IEEE International Conference on, pp. 1054 – 1057. July 2005.
[18] Guang Dai and Changle Zhou; “Face recognition using support vector machines with the robust feature,” Robot and Human Interactive Communication, 2003.Proceedings. ROMAN 2003. The 12th IEEE International Workshop on, pp. 49 – 53, Nov. 2003.
[19] Heisele B., Ho P. and Poggio T., “Face recognition with support vector machines:global versus component-based approach,” Computer Vision, 2001. ICCV 2001.Proceedings. Eighth IEEE International Conference on, pp. 688 -694, July 2001.
[20] Karungaru S., Fukumi M., and Akamatsu N., “Face recognition using genetic algorithm based template matching,” Communications and Information Technology,2004. ISCIT 2004. IEEE International Symposium on, vol. 2, pp. 1252 -1257 ,Oct. 2004
[21] Anderson K. and McOwan P.W., “A real-time automated system for the recognition of human facial expressions,” Systems, Man and Cybernetics, Part B, IEEE Transactions on, vol. 36, pp. 96-105, Feb. 2006.
[22] 吳瑞珍,人臉特徵自動抽取之演算法設計與應用,碩士論文,元智大學電機工程研究所,中壢,2002
[23] Yuxiao Hu, Dalong Jiang, Shuicheng Yan, Lei Zhang and Hongjiang zhang;“Automatic 3D reconstruction for face recognition,” Automatic Face and GestureRecognition, 2004. Proceedings. Sixth IEEE International Conference on, pp. 842- 848, May 2004
[24] Heisele B. and Koshizen T.; “Components for face recognition,” Automatic Faceand Gesture Recognition, 2004. Proceedings. Sixth IEEE International Conference on, pp. 153-158, May 2004
[25] Ivanov Y., Heisele B. and Serre, T.; “Using component features for face
recognition,” Automatic Face and Gesture Recognition, 2004. Proceedings. SixthIEEE International Conference on, pp.421- 426, May 2004
[26] Sahambi, H.S. and Khorasani, K.;” A neural-network appearance-based 3-D object recognition using independent component analysis,” Neural Networks, IEEE Transactions on, vol. 14, pp. 138-149, Jan. 2003
[27] Moreno A.B., Sanchez A., Velez J. and Diaz J., “Face recognition using 3D local geometrical features: PCA vs. SVM,” Image and Signal Processing and Analysis,2005. ISPA 2005. Proceedings of the 4th International Symposium on, pp. 185-190 , Sept. 2005
[28] Fei Zuo, de With, P.H.N, “Real-time Embedded Face Recognition for Smart Home,” Consumer Electronics, IEEE Transactions on, vol., pp.183-190, Feb. 2005
[29] Li-Nein Chu, A Novel Partitioned Gradient Fisherface Algorithm for Robust Face Recognition, National Tsing Hua University, Computer science, thesis, July 2004.
[30] Kwok-Wai Wong, Kin-Man Lam and Wan-Chi Siu, “A Robust Scheme for Live Detection of Human Face in Color Images,” Signal Processing: Image Communication, The Netherlands, Vol. 18, No.2, pp.103-114, February-2003.
[31] Rein-Lien Hus, and Anil K. Jain “Face detection in color images,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol.24, NO.5, pp. 696-706, May-2002.
[32] Yanjiant Wang, and Baozong Yuan, “A novel approach for human face detection from color images under complex background,” Pattern Recognition, Vol. 34, NO.3, pp. 1983-1992, February-2000.
[33] Chiunhsiun Lin, Kuo-Chin Fan,”Human face detection using geometric triangle relationship”, Pattern Recognition, 2000. Proceedings. 15th International Conference , vol.2, pp.941 - 944 Sept-2000.
[34] S. H. Kim and H.G. Kim, “Face Detection using Multi-model Information,” Proc. FourthIEEE International Conference Automatic Face and Gesture Recognition, pp.14-19, 2000.
[35] 李宗岳,自適性臉部特徵擷取的動態人臉偵測,碩士論文,台灣師範大學機電科技學系,2006.
[36] Rafael C. Gonzalez,Richard E. Woods “Digital Image Processing ”台灣培生教育出版股份有限公司,2003.
[37] James S. Walker,“ A primer of wavelet and their scientific applications,” CHAPMAN& HALL/CRC, 1999.
[38] Raghuveer M. Rao and Ajit S. Bopardikar, Wavelet transforms : introduction to theory and applications. Addison Wesley Longman, July 1998.
[39] M. Turk and A. Pentland, “ Eigenfaces for Recognition,” Journal of Cognitive Neuroscience, vol. 3, pp.71–86, 1991
[40] Wong C.-C. and Lai H.-R., “A new grey relational measurement,” The journal of Grey System, pp.341-346, 2000
[41] Chang, K.-C. and Yeh, M.-F., ” Grey relational analysis based approach for data clustering,” IEE Proc.-Vis. Image Signal Process., Vol. 152, pp. 165 - 172, April 2005.
[42] AT&T Laboratories Cambridge, “ORL database,”
http://www.cam-orl.co.uk/facedatabase.html
[43] 耶魯大學,“Yale database,”
http://cvc.yale.edu/projects/yalefaces/yalefaces.html
其他參考資料
人體計測資料庫,http://www.iosh.gov.tw/ergo.htm。
鐘國亮, “ Image Processing and Computer Vision ”東華書局股份有限公司,2004