簡易檢索 / 詳目顯示

研究生: 劉莉莉
論文名稱: 離子液體及中孔二氧化矽SBA-15負載雜多酸-離子液體超強酸觸媒之製備、鑑定與催化特性研究
Synthesis, Characterization, and Catalytic Properties of Ionic Liquids and Mesoporous SBA-15 Silica Supported Heteropolyacid-Ionic Liquid Superacid Catalysts
指導教授: 劉尚斌
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2014
畢業學年度: 103
語文別: 中文
論文頁數: 149
中文關鍵詞: 離子液體中孔二氧化矽負載型雜多酸觸媒
英文關鍵詞: ionic liquid, immobilization, heteropolyacids
DOI URL: https://doi.org/10.6345/NTNU202205244
論文種類: 學術論文
相關次數: 點閱:130下載:17
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 離子液體(ionic liquids; ILs)是公認具有高穩定性、極低揮發性的綠色溶劑,更因其可藉由離子交換調控的陽離子和陰離子組份,該液體鹽類可為質子、非質子或兩性離子(zwitterionic)的型態,是一理想的均相催化觸媒。本論文部份研究利用本實驗室所開發之31P-TMPO NMR酸性鑑定技術,即利用三甲基磷氧化物(TMPO)做為探針分子,透過31P核磁共振(nuclear magnetic resonance; NMR)光譜進行實驗,針對不同類型離子液體之酸性特性加以鑑定,並討論其催化應用性。

    雜多酸(heteropolyacids;HPAs)則是一種穩定性極佳的無機鹽類,由於其獨特的氧化、還原特性、可溶性和超強酸特性,常被應用於石化及生質能催化反應做為異相或均相觸媒。然而,由於HPA容易溶解於極性溶劑(如水、醋酸等)中以及表面積低等缺點,使反應後催化劑與產物不易分離以及觸媒循環使用困難等缺點,極大地限制了其在催化領域的工業應用。因此,許多新進研究著重於將HPA固載在高比表面積擔體上面,藉以提升其分散性及穩定性。但單純以物理吸附方式將雜多酸負載在擔體表面則存在嚴重的催化劑浸出(leaching)問題,不利於產物分離以及觸媒回收循環使用。針對此一困難問題,本研究開發一種新穎負載型無機有機複合催化劑,選擇利用1-甲基-3-(三甲氧基甲矽烷)咪唑氯化物(1-methyl-3-(trimethoxysilylpropyl)- imidazolium chloride)離子液體做為連接HPA與具高比表面積的中孔二氧化矽SBA-15擔體之間的橋樑,首先將IL修飾於SBA-15載體表面,再利用IL上的帶負電咪唑環與雜多酸陽離子所形成的離子鍵結達到固載的目的。吾人所製備的HPA-IL/SBA-15觸媒並透過各種物裡化學分析與光譜技術加以鑑定,此外,亦利用31P-TMPO NMR酸性鑑定技術其酸性特性(酸強度與濃度)。最後,並藉由線性烷基苯(LAB)催化反應進行測試,了解其催化效能。

    由異核固態NMR及其他實驗結果顯示,吾人成功地負載典型的Keggin-型態HPA,即磷鎢酸(H3PW12O40; HPW),在IL修飾的SBA-15表面,且所製備之HPW-IL/SBA-15觸媒具有超強酸的特性存在。經由改變HPW和IL的負載比例,吾人亦成功的調控負載在擔體上的酸強度與酸量分佈,並發現在適當的HPW/IL比例(即接近1:1)時,反應不僅具有高轉化率且有較好的短鏈線性烷基苯(2-LAB)產物選擇率,說明此時HPW原存在的三個質子活性酸位(proton active sites)當中,平均只有一個質子與IL上的陰離子形成離子鍵而被佔據,所剩餘的兩個質子表現出最高濃度的超強酸質子分佈,因而展現較佳的催化能力。反之,負載過少(或過多)HPW時,極低(或極高)質子酸位的存在,均導致較低的LAB轉化率和選擇率,反而不利於反應的進行。

    Ionic liquids (ILs) are well-known green solvents with high stability and extremely low volatility. Moreover, through ion-exchange processes invoked by properly choosing the anionic and ionic components, the nature of such liquid salts may also be either protic, aprotic, or zwitterionic, making ILs favorable homogeneous catalysts or electrolytes. Portions of this study focus on synthesis and characterization of various ILs and their catalytic performances. In particular, the acid properties of these ILs were characterized by the 31P nuclear magnetic resonance (NMR) of trimethylphosphine oxide (TMPO), that is, the 31P-TMPO NMR approach, developed in this laboratory.

    Heteropolyacids (HPAs) are inorganic salts with excellent stability, solubility, oxidation and reduction capability, and ultra-strong acidity, and have been exploited for heterogeneous or homogeneous catalytic conversions of petro-chemical and biomass. Nonetheless, owing to their high solubility in polar solvents (such as water, acetic acid etc.) and low surface areas, HPAs suffer from difficulties in product separation, post-treatment pollution, hence largely limit their practical industrial applications. Thus, considerable recent R&D attentions have been directed toward immobilization of the HPA catalyst on solid supports, aiming to improve catalyst dispersion and stability. Nonetheless, the supported HPA catalysts are still drawback by undesirable leaching problem, causing problems in product separation and catalyst recycling. Herein, a novel synthesis route is proposed for fabricating HPA-immobilized solid catalysts. This is accomplished by invoking functionalization of a specific-task IL, namely 1-methyl-3- (trimethoxysilylpropyl)-imidazolium chloride on to high surface-area mesoporous SBA-15 silica, followed by ionic coupling of the positively charged pyrrolic ring of the IL with anionic ligand of the HPW. The physicochemical properties of TPA-IL/SBA-15 catalysts so fabricated were characterized by a variety of different analytical and spectroscopic techniques. Whereas, their acidic properties, such as acidic strength and concentration, were assessed by the 31P-TMPO NMR approach. Moreover, their catalytic properties were tested by linear alkyl benzene (LAB) reactions.

    We successfully immobilized a typical heteropolyacid with Keggin structure, namely tunstophosphoric acid (H3PW12O40; HPW) onto a IL surface-modified mesoporous SBA-15 silicas while preserving the desirable superacidity and acid concentration, as revealed by heteronucleus solid-state NMR studies. Moreover, the acid properties of such HPW-IL/SBA-15 catalysts may be adjusted by controlling the relative loadings of HPW and IL. It was found that, as the HPW/IL ratio reaching 1:1, a superior LAB conversion and short-chain LAB (e.g., 2-LAB) selectivity were simultaneously achieved, indicating the highest preservation of proton active sites. In this case, two out of the total three protic sites remain active, while the other one inactivated by linkage to an IL ligand. Whereas for the cases of inadequate or excessive HPW loadings, which result in diminishing or upmost abundance of protic sites, inferior LAB conversion and 2-LAB selectivity were observed.

    第1章 緒論 1 1.1 離子液體簡介 1 1.1.1 離子液體的定義與特點 1 1.1.2 離子液體的分類 4 1.2 雜多酸觸媒簡介 6 1.2.1 雜多酸的發展歷史 6 1.2.2 雜多酸化合物的結構、性質與應用 8 1.2.3 磷鎢酸之物性鑑定及酸性分佈 19 1.3 酸性鑑定 28 1.3.1 液體酸催化劑之鑑定技術簡介與回顧 28 1.3.2 固體酸催化劑之鑑定技術簡介與回顧 30 1.3.3 31P NMR在酸催化劑之鑑定應用 33 1.4 線性烷基化(LAB)反應 36 1.4.1 LAB的發展歷史 36 1.4.2 LAB反應機制 38 1.5 研究動機與目的 40 第2章 實驗方法與步驟 43 2.1 化學藥品 43 2.2 觸媒樣品製備 45 2.2.1 離子液體(IL)樣品製備 45 2.2.2 磷鎢酸負載離子液體修飾SBA-15樣品製備 48 2.3 核磁共振光譜學及應用 49 2.3.1 核磁共振光譜學簡介 49 2.3.2 魔角旋轉 52 2.3.3 去耦合 53 2.3.4 跨越極化 53 2.4 樣品鑑定 54 2.4.1 粉末X-光繞射 54 2.4.2 氮氣等溫吸附/脫附測量 56 2.4.3 元素分析 57 2.4.4 感應耦合電漿質譜分析 58 2.5 酸性鑑定 59 2.5.1 離子液體酸性鑑定 59 2.5.2 磷鎢酸負載離子液體修飾SBA-15之酸性鑑定 60 2.6 LAB反應設備及操作條件 62 第3章 離子液體酸性特性鑑定與催化應用研究 67 3.1 MIMPS系列酸性鑑定 67 3.2 TEAPS系列酸性鑑定 70 3.3 Bmim系列酸性鑑定 72 3.4 可調控B酸-L酸共存離子液體觸媒之酸性鑑定及催化應用 75 3.4.1 B-L/IL觸媒之酸性鑑定 76 3.4.2 B-L/IL觸媒之催化活性 77 3.5 離子液體負載雜多酸觸媒之酸性鑑定及催化效能 79 3.5.1 PPS-HPW IL觸媒之酸性鑑定 80 3.5.2 PPS-HPW IL觸媒之催化活性 82 第4章 磷鎢酸負載離子液體修飾SBA-15之物化特性、酸性鑑定與催化活性探討 85 4.1 磷鎢酸負載離子液體修飾SBA-15之物化特性 85 4.2 HPW-IL/SBA-15觸媒之酸性鑑定 92 4.3 HPW-IL/SBA-15觸媒之LAB反應活性 96 第5章 結論與未來研究展望 103 參考文獻 105 附錄 111 附錄3-1 MIMPS系列離子液體在不同TMPO濃度之31P NMR光譜。 111 附錄3-2 TEAPS系列離子液體在不同TMPO濃度之31P NMR光譜。 114 附錄3-3 BMIM離子液體在不同TMPO濃度之31P NMR光譜。 117 附錄3-4 學術論文 122 附錄3-5 學術論文 132 附錄3-6 學術論文 141 附錄4-1 z-HPW-IL/SBA觸媒之產物於反應時間所占比例。 149

    [1] 張星辰,”離子液體-從理論基礎到研究進展”;化學工業出版社,2009。
    [2] P. Bonhote, A. P. Dias, N. Papageorigious, Inorg. Chem. 1995, 35, 1168-1178.
    [3] T. B. Scheffler, C. L. Hussey, K. R. Seddon, C. M. Kear, P. D. Armitage, Inorg. Chem. 1983, 22(15), 2099-2100.
    [4] C. Marignac, Ann. Chim. Phys. 1864, 4, 5-75.
    [5] J. Berzelius, Pogg. Ann. 1826, 6, 369-380.
    [6] H. Savanberg, H. Struve, J. Prakt. Chem. 1848, 44, 257-291.
    [7] D. E. Katsoulis, Chem. Rev. 1998, 98, 359-387.
    [8] J. F. Keggin, Proc. Roy. Soc. A 1934, 144, 75-100.
    [9] B. Dawson, Acta Crystallogr. 1953, 6, 113-126.
    [10] L. C. W. Baker, J. S. Figgis, J. Am. Chem. Soc. 1970, 92, 3794-3797.
    [11] K. Yamamura, Y. Sasaki, J. Chem. Soc. Chem. Commun. 1973, 648.
    [12] J. N. Armor, Appl. Catal. A 2001, 222, 407-426.
    [13] J. M. Maestre, X. Lopez, C. Bo, J. M. Poblet, N. Casan-Pastor, J. Am. Chem. Soc. 2001, 123, 3749-3758.
    [14] 馬榮華、劉春濤,”雜多配合物異構體”;哈爾濱工程大學出版,2007。
    [15] M. J. Janik, K. A. Campbell, B. B. Bardin, R. J. Davis, M. Neurock, Appl. Catal. A 2003, 256, 51-68.
    [16] A. J. Bradley, J. W. Illingworth, Proc. Roy. Soc. 1936, 157A, 113-131.
    [17] K. A. De Silva Rocha, P. A. Robles-Dutenhefner, I. V. Kozhevnikov, E. V. Gusevskaya, Appl. Catal. A 2009, 352, 188-192.
    [18] X. Yan, P. Mei, J. Lei, Y. Mi, L. Xiong, L. Guo, J. Mol. Catal. A 2009, 304, 52-57.
    [19] D. Jin, J. Gao, Z. Hou, Y. Guo, Z. Lu, Y. Zhu, X. Zheng, Appl. Catal. A 2009, 352, 259-264.
    [20] Y. Liu, L. Xu, B. Xu, Z. Li, L. Jia, W. Guo, J. Mol. Catal. A 2009, 297, 86-92.
    [21] G. S. Kumar, M. Vishnuvarthan, M. Palanichamy, V. Murugesan, J. Mol. Catal. A 2006, 260, 49-55.
    [22] B. B. Bardin, S. V. Bordawekar, M. Neurock, R. J. Davis, J. Phys. Chem. B 1998, 102, 10817-10825.
    [23] M. Misono, T. Okuhara, T. Ichiki, T. Arai, Y. Kanda, J. Am. Chem. Soc. 1987, 109, 5535-5536.
    [24] N. Pasha, N. Seshu Babu, K. T. Venkateswara Rao, P. S. Sai Prasad, N. Lingaiah, Tetrahedron Lett. 2009, 50, 239-242.
    [25] P. A. Robles-Dutenhefner, K. A. da Silvia, M. R. H. Siddiqui, I. V. Kozhevnikov, E. V. Gusevskaya, J. Molecular Catal. A 2001, 175, 33-42.
    [26] Q. Liu, W. Wu, J. Wang, X. Ren, Y. Wang, Micropor. Mesopor. Mater. 2004, 76, 51-60.
    [27] T. Blasco, A. Corma, A. Martinez, P. Martinez-Escolano, J. Catal. 1998, 177, 306-313.
    [28] B. M. Devassy, G. V. Shanbhag, F. Lefebvre, S.B. Halligudi, J. Mol. Catal. A 2004, 210, 125-130.
    [29] A. V. Ivanov, T. V. Vasina, V. D. Nissenbaum, L. M. Kustov, M. N. Timofeeva, J. I. Houzvicka, Appl. Catal. A 2004, 259, 65-72.
    [30] N. R. Shiju, H. M. Williams, D. R. Brown, Appl. Catal. B 2009, 90, 451-457.
    [31] Y. Daiko, H. Takagi, K. Katagiri, H. Muto, M. Sakai, A. Matsuda, Solid State Ionics 2008, 179, 1174-1177.
    [32] 楊芷宜,碩士論文,"雜多酸觸媒之製備與酸性鑑定",淡江大學化學工程與材料工程學系,2009年7月。
    [33] S. J. Huang, C. Y. Yang, A. Zheng, N. Feng, N. Yu, P. H. Wu, Y. C. Chang, Y. C. Lin, F. Deng, S. B. Liu, Chem. Asian J. 2011, 6, 137-148.
    [34] N. Feng, A. Zheng, S. J. Huang, H. Zhang, N. Yu, C. Y. Yang, S. B. Liu, F. Deng, J. Phys. Chem. C 2010, 114, 15464-15472.
    [35] A. Zheng, S. J. Huang, S. B. Liu, F. Deng, Phys. Chem. Chem. Phys. 2011, 13, 14889-14901.
    [36] A. Zheng, F. Deng, S. B. Liu, Ann. Rep. NMR Spectrosc. 2014, 81, 47-108.
    [37] U. Filek, A. Bressel, B. Sulikowski, M. Hunger, J. Phys. Chem. C 2008, 112, 19470-19476.
    [38] S. Uchida, K. Inumaru, M. Misono, J. Phys. Chem. B 2000, 104, 8108-8115.
    [39] A. Zheng, H. Zhang, X. Lu, S.B. Liu, F. Deng, J. Phys. Chem. B 2008, 112, 4496-4505.
    [40] A. Zheng, S. J. Huang, W. H. Chen, P. H. Wu, H. L. Zhang, H. K. Lee, L. C. de Menorval, F. Deng, S. B. Liu, J. Phys. Chem. A 2008, 112, 7349-7356.
    [41] C.Y. Yang, C.C. Chang, N. Feng, S.J. Huang, A. Zheng, Y.C. Chang, K.C. Lee, F. Deng, S.B. Liu, J. Anal. Sci. Technol. 2011, 2, A155-A158.
    [42] K. Arata, Adv. Catal. 1990, 37, 165-211.
    [43] R. J. Gillespie, Acc. Chem. Res. 1968, 1, 202-209.
    [44] 楊瑞郎,碩士論文,實作評量工具編製之研究—以高三化學「酸鹼滴定」為例,高雄師範大學科學教育研究所,2002年6月。
    [45] W. K. Hall, Acc. Chem. Res. 1975, 8, 257-263.
    [46] Q. Zhao, W. H. Chen, S. J. Huang, Y. C. Wu, H. K. Lee, S. B. Liu, J. Phys. Chem. B 2002, 106, 4462-4469.
    [47] W. P. Rothwell, W. Shen, J. H. Lunsford, J. Am. Chem. Soc. 1984, 106, 2452-2453.
    [48] J. H. Lunsford, Top. Catal. 1997, 4, 91-98.
    [49] D. Hadži, C. Klofutar, S. Oblak, J. Chem. Soc. A 1968, 905-908.
    [50] J. H. Lunsford, P. N. Tutunjian, P. J. Chu, E. B. Yeh, D. J. Zalewski, J. Phys. Chem. 1989, 93, 2590-2595.
    [51] E. F. Rakiewicz, A. W. Peters, R. F. Wormsbecher, K. J. Sutovich, K. T. Mueller, J. Phys. Chem B 1998, 102, 2890-2896.
    [52] J. P. Osegovic, R. S. Drago, J. Phys. Chem. B 2000, 104, 147-154.
    [53] A. Aitani, J. B. Wang, I. Wang, S. Al-Khattaf, T. C. Tsai, Catal Surv Asia 2014, 18, 1-12.
    [54] M. Singh, S. Satish, Environ. Pollut. 1989, 58, 109-113.
    [55] P. B. Venuto, L. A. Hamilton, P. S. Landis, J. J. Wise, J. Catal. 1966, 5, 81-98
    [56] O. B. Peersen, X. Wu, I. Kustanovich, S. O. Smith, J. Magn. Reson. A 1993, 104, 334-339.
    [57] G. Metz, X. Wu, S. O. Smith, J. Magn. Reson. A 1994, 110, 219-227.
    [58] X. Han, H. Du, C. T. Hung, L. L. Liu, P. H. Wu, D. Ren, S. J. Huang, S. B. Liu, Green Chem. 2014, Available on-line, http://dx.doi.org/10.1039/c4gc01470g.
    [59] X. Han, Y. F. He, C. T. Hung, L. L. Liu, S. J. Huang, S. B. Liu, Chem. Eng. Sci. 2013, 104, 64-72.
    [60] X. Han, W. Yan, K. Chen, C. T. Hung, L. L. Liu, P. H. Wu, S. J. Huang, S. B. Liu, Appl. Catal. A 2014, 485, 149-156.
    [61] M. Y. Huang, X. Han, C. T. Hung, J. C. Lin, P. H. Wu, J. C. Wu, S. B. Liu, J. Catal. 2014, 320, 42-51.
    [62] D. M. Clode, Chem. Rev. 1979, 79, 491–513.
    [63] A. I. Khuri, J. A. Cornell, Response Surfaces: Designs and Analyses, Marcel Dekker,New York, NY, 1987.

    下載圖示
    QR CODE