研究生: |
高昌弘 Gao, Chang-Hong |
---|---|
論文名稱: |
三價鐵超氧化物對四氫呋喃之催化探討 Catalytic study of Iron(III)-Superoxo complex towards tetrahydrofuran |
指導教授: |
李位仁
Lee, Way-Zen |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 中文 |
論文頁數: | 33 |
中文關鍵詞: | 鐵超氧化物 、鐵過氧化物 、鐵過氧氫化物 |
英文關鍵詞: | iron superoxo, iron peroxo, iron hydroperoxo |
DOI URL: | http://doi.org/10.6345/NTNU201900403 |
論文種類: | 學術論文 |
相關次數: | 點閱:208 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
生物體中細胞色素P450的催化循環過程中,推測會有鐵超氧化物、鐵過氧化物和鐵過氧氫化物之中間體生成,其中鐵超氧化物為重要的中間體。本研究利用三氮二氧五牙基H2(BDPP)與二價鐵金屬離子反應形成前驅物FeII(BDPP) (1)。在-70 oC下,將氧氣通入前驅物1會形成FeIII(BDPP)(O2˙) (2);若持續通入氧氣五個小時,則會生成(FeIII(BDPP))2(μ - O2) (3)。 將其樣品偵測氣相色譜法-質譜聯用(Gas chromatography–mass spectrometry),則會得到產物2-羥基四氫呋喃(2-hydroxy-tetrahydro-furan)與γ-丁內酯(γ-butyrolactone)。和提前加入的內標準品十二烷(Dodecane)相比較,則可得出產率。
living organism, the catalytic process of cytochrome P450 is presumed to produce iron superoxo , iron peroxo and iron hydroperoxo intermediates. Among them iron superoxo is an the first critical intermediate. In this study, N3O2 petadentate ligand, H2(BDPP), was reacted with FeCl2 to form FeII(BDPP) (1) precursor. At -70 oC, FeII(BDPP) (1) was reacted with dioxygen to produce FeIII(BDPP)(OO˙) (2). If dioxygen was continuously supplied for five hours, (FeIII(BDPP))2(μ - O2) (3) was formed.
From sample detection of gas chromatography-mass spectrometry, the product 2-hydroxytetrahydrofuran and γ-butyrolactone are obtained. The yield is obtained in comparison with the internal standard dodecane , which was added in advance.
1. Shu-Shan Gao, Nathchar Naowarojna, Ronghai Cheng, Xueting Liuand Pinghua Liu, Nat. Prod. Rep., 2018, 35, 792–837
2. Robert M. Cicchillo, Houjin Zhang, Joshua A. V. Blodgett, John T. Whitteck, Gongyong Li, Satish K. Nair, Wilfred A. van der Donk & William W. Metcalf, Nature ,2009, 459, 871–874
3. Pamela A. Williams, Jose Cosme, Dijana Matak Vinkovic, Alison Ward, Hayley C. Angove, Philip J. Day, Clemens Vonrhein, Ian J. Tickle, Harren Jhoti Science, 2004, 305, 683–686
4. Sussan Ghassabian, Tristan Rawling, Fanfan Zhou, Munikumar R. Doddareddy, Bruce N. Tattam, David E. Hibbs, Robert J. Edwards, Pei H. Cui, Michael Murray Biochemical Pharmacology, 2012, 84, 215–223
5. James Belcher, Kirsty J. McLean, Sarah Matthews, Laura S. Woodward, Karl Fisher, Stephen E. J. Rigby, David R. Nelson, Donna Potts, Michael T. Baynham, David A. Parker, David Leys, and Andrew W. Munro J Biol Chem. 2014, 289, 6535–6550
6. Peter L. Roach , Ian J. Clifton, Charles M. H. Hensgens , Norio Shibata , Christopher J. Schofield , Janos Hajdu & Jack E. Baldwin* Nature 1997, 387, 827–830
7. Esta Tamanaha, Bo Zhang, Yisong Guo, Wei-chen Chang, Eric W. Barr, Gang Xing, Jennifer St. Clair, Shengfa Ye, Frank Neese, J. Martin Bollinger, Jr., and Carsten Krebs J. Am. Chem. Soc. 2016, 138, 8862−8874
8. Wonwoo Nam , Acc. Chem. Res., 2015, 48 (8), pp 2415–2423
9. Yong-Min Lee, Seungwoo Hong, Yuma Morimoto, Woonsup Shin, 33 Shunichi Fukuzumi, and Wonwoo Nam, J. Am. Chem. Soc. 2010, 132, 10668–10670
10. Chien-Wei Chiang, Scott T. Kleespies, Heather D. Stout, Katlyn K. Meier, Po-Yi Li, Emile L. Bominaar, Lawrence Que, Jr.,Eckard Münck, and Way-Zen Lee J. Am. Chem. Soc. 2014, 136, 10846−10849
11. Maike N. Blakely, Maksym A. Dedushko, Penny Chaau Yan Poon, Gloria Villar-Acevedo, and Julie A. Kovacs J. Am. Chem. Soc. 2019, 141, 1867−1870