簡易檢索 / 詳目顯示

研究生: 吳政德
Wu, Zheng-De
論文名稱: 熱處理與稻殼燃燒灰質微粒添加對AA5052與AA6061鋁合金摩擦攪拌異質接合之效應研究
Influence of post-weld heat treatment and rice husk ask particles on microstructure and mechanical properties of dissimilar friction stir welded 5052 and 6061 aluminum alloys
指導教授: 程金保
Cheng, Chin-Pao
學位類別: 碩士
Master
系所名稱: 機電工程學系
Department of Mechatronic Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 82
中文關鍵詞: 鋁合金摩擦攪拌銲接稻殼燃燒灰質時效熱處理
英文關鍵詞: aluminum alloy, friction stir welding, rice husk ash particles, aging heat treatment
DOI URL: http://doi.org/10.6345/NTNU202001400
論文種類: 學術論文
相關次數: 點閱:94下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究使用摩擦攪拌銲接製程應用於AA5052與AA6061鋁合金之異質對接,攪拌工具使用高速鋼材質,攪拌桿與機台主軸之傾斜角設定為2度,探討不同轉速與進給對銲件接合性質之影響。為了改善接合品質,本研究針對銲接件進行銲後熱處理,並於攪拌區加入稻殼燃燒灰質微粒,再針對接合成功之銲接件進行顯微組織與機械性質分析。
    實驗結果顯示,在接合攪拌區兩種合金產生混合效果,達到有效接合,並有晶粒細化現象,而在熱影響區則發生晶粒粗大化。硬度量測結果發現銲道整體硬度低於原始母材,且在AA6061熱影響區之硬度最低,約為50 Hv,拉伸試驗之試片均於此處斷裂。當主軸轉速為1600 rpm、進給速度為40 mm/min時,可以獲得較佳之機械性質,抗拉強度為172.7 MPa,最大延伸率為10.3%。為提升銲接件之機械性質,本研究分別於銲後實施160℃持溫12小時之T5熱處理與530℃持溫1.5小時後再進行160℃持溫12小時之T6熱處理,硬度分析結果顯示T5熱處理可以提升AA6061側攪拌區之硬度達100 Hv左右,但對於熱影響區及AA5052側攪拌區之硬度則無明顯提升,銲接件之抗拉強度稍有提升,但延伸率略降,試片斷裂處仍在AA6061側之熱影響區。經T6熱處理後AA6061側攪拌區與熱影響區之硬度均提升至130 Hv左右,示差掃描熱分析(DSC)的結果顯示有析出物形成,拉伸試片的斷裂處則為銲道中央部位。另一方面,於攪拌區混入稻殼燃燒灰質微粒,分別經1~4次的摩擦攪拌製程,經T6熱處理後可以提升攪拌區的硬度,SEM/EBSD分析的結果顯示具有晶粒細化的效果,經混入稻殼燃燒灰質微粒後重複攪拌2~4次的試片,拉伸後於AA5052側斷裂,抗拉強度最高可以提升到211 MPa,延伸率則提升至12.6%左右。

    This research is devoted to using the friction stir welding process for the butt joint of AA5052 and AA6061 aluminum alloy. For the stir tools, high-speed steel is selected, and the inclination angle between the stir rod and the main spindle of the machine is set to 2 degrees. Thereby, this study explored the effects of different speeds and feeding on the joint properties of weldments. Based on the goal of improving joint quality, this research performed post-weld heat treatment for welded specimens, and added rice husk burning ash particles in the stir zone, and then conducted correlation analysis of the microstructure and mechanical properties of the welded specimens that were successfully joined.
    It can be understood from the experimental results that the two alloys in the joining and stirring zone produce a mixed effect, thereby achieving effective joining, and there is a phenomenon of grain refinement. As for the heat-affected zone, the phenomenon of grain coarsening occurs. Based on the hardness measurement results, the author found that the overall hardness of the weld bead is lower than the original parent material. Moreover, the hardness in the heat-affected zone of AA6061 is the lowest, about 50 Hv, and the test pieces that have undergone the tensile test are all broken here. When the spindle speed is 1600 rpm and the feed rate is 40 mm/min, better mechanical properties can be obtained. Continuing the above, the tensile strength is 172.7 MPa and the maximum elongation is 10.3%. Due to the need to improve the mechanical properties of the welded parts, this study performed T5 heat treatment at 160℃ for 12 hours after welding, and T6 heat treatment at 160℃ for 12 hours at 530℃ for 1.5 hours. Then, the hardness analysis results show that T5 heat treatment can increase the hardness of the stirring zone on the AA6061 side by about 100 Hv. However, this process does not significantly improve the hardness of the heat-affected zone and the stirring zone on the AA5052 side. The tensile strength of the welded parts is slightly improved, but the elongation is slightly reduced. The fracture of the test specimens in this process is still in the heat-affected zone on the AA6061 side. Furthermore, after T6 heat treatment, the hardness of the stirring zone and the heat-affected zone on the AA6061 side both increase to about 130 Hv, and the formation of precipitates is found by differential scanning calorimetry (DSC) analysis. As for the fracture location of the tensile test specimens, it is the center of the weld bead. On the other hand, after mixing rice husk burning ash particles in the mixing zone, it is subjected to 1 to 4 friction stir welding processes and T6 heat treatment to increase the hardness of the stiring zone. The results of SEM/EBSD analysis showed that the effect of grain refinement appeared. The test specimens mixed with rice husk burning ash particles and repeated stirring 2 to 4 times broke on the AA5052 side after tensile testing, the tensile strength can be increased to 211 MPa, and the elongation is improved to about 12.6%.

    第一章 緒論 1 1.1 研究背景 1 1.2 研究動機 3 第二章 文獻探討 4 2.1 鋁合金金屬特性 4 2.1.1 鋁合金介紹 4 2.1.2 鋁合金分類 4 2.2鋁合金材料及熱處理 8 2.2.1 6061鋁合金 8 2.2.2 5052鋁合金 8 2.2.3 鋁合金析出硬化 8 2.3 摩擦攪拌銲接 10 2.3.1摩擦攪拌銲接簡介 10 2.3.2 摩擦攪拌銲接原理 10 2.3.3 摩擦攪拌銲接銲後組織特徵 11 2.4 稻殼灰質增強機械性質之應用 12 2.4.1異質鋁合金與鋁合金添加微粒之研究 12 2.5 異質摩擦攪拌銲接 14 2.5.1 異質鋁合金搭接 14 2.5.2 異質鋁合金點銲 15 2.5.3 異質鋁合金摩擦攪拌對接 18 2.5.4 鋁合金析出物之示差掃描熱分析 21 第三章 實驗步驟與方法 23 3.1實驗架構 23 3.2實驗材料 24 3.2.1 6061鋁合金與5052鋁合金 24 3.2.2稻殼燃燒灰質之製造過程 26 3.3 銲接製程參數 27 3.4 熱處理參數 29 3.5材料分析試驗 30 3.5.1 金相顯微組織觀察 30 3.5.2 SEM/EDX元素分析 31 3.5.3 DSC分析 31 3.5.4微硬度測試 33 3.5.5拉伸試驗 34 3.5.6 EBSD分析 35 第四章 結果與討論 36 4.1 轉速對異質鋁合金接合性質 36 4.1.1 不同轉速銲件之銲道與顯微組織 36 4.1.2 不同轉速銲件之銲接區域晶粒 38 4.1.3 不同轉速接合銲件之機械性質 40 4.2 銲後熱處理對銲件性質的影響 44 4.2.1 銲後熱處理之顯微組織 44 4.2.2 銲後熱處理之銲接區域晶粒 49 4.2.3 銲後熱處理之機械性質 51 4.2.4 DSC分析析出物 58 4.3 添加稻殼燃燒灰質微粒對銲件性質影響 60 4.3.1 稻殼燃燒灰質粉末與微觀分析 60 4.3.2 添加稻殼燃燒灰質之銲道與顯微組織 61 4.3.3 添加稻殼燃燒灰質之銲件機械性質 67 第五章 結論 74 參考文獻 75

    【1】 鄭慶民,熱處理型鋁合金銲接性之研究,國立交通大學,博士論文,2005。
    【2】 W. M. Thomas, "Friction stir butt welding" , United States Patent #5, 460, 317, 1995.
    【3】 K. Fman, “Introduction to aluminum alloys and tempers”, ASM, Introduction, 2000.
    【4】 楊欣璟, "銲後熱處理對鋁合金 5083 與 7005 異材 TIG 銲接機械性質之研究",國立中央大學, 碩士論文, 2018。
    【5】 R. Rabby, R. Kenneth, R. Nicole , “Joining thick section aluminum to steel with suppressed FeAl intermetallic formation via friction stir dovetailing”, Scripta Materialia, Vol.148, pp.63–67, 2018.
    【6】 M. Anibal, T. Ilana, M. Andrey, “Role of shear in interface formation of aluminum-steel multilayered composite sheets”, MaterialsScience and Engineering, Vol.705 , pp.142–152, 2017.
    【7】 H. Zhang, H. Liu, “Characteristics and formation mechanisms of welding defects in underwater friction stir welded aluminumalloy”, Metallography Microstructure, Vol.6 , pp.269–281, 2012.
    【8】H. J. Liu, H. J. Zheng, L. Yu, “Effect of welding speed on microstructures and mechanical properties of underwater friction stir welded 2219 aluminum alloy”, Materials&Design, Vol.32 , pp.1548–53, 2011.
    【9】 M. Howeyze, H. Arabi, “Strengthening of AA5052 aluminum alloy by equal channel angular pressing followed by softening at room temperature”, Materials Science and Engineering, Vol.720, pp.160–168, 2018.
    【10】S. Malopheyev, I. Vysotskiy, V. Kulitskiy, S. Mironov, “Optimization of processing microstructure properties relationship in friction-stir welded 6061-T6 aluminum alloy”, Materials Science and Engineering, Vol.662, pp.136–143, 2016.
    【11】H. B. Cary, S. C. Helzer, Modern Welding Technology, Upper Saddle River, N.J : Pearson Prentice Hall, 2005.
    【12】盧仲湘, ”高強度鋁合金之銲接熱裂研究”,國立交通大學,碩士論文,1989。
    【13】M. Howeyze, H. Arabi, “Strengthening of AA5052 aluminum alloy by equal channel angular pressing followed by softening at room temperature”, Materials Science Engineering, Vol.720, pp.160–168, 2018.
    【14】S. Malopheyev, I. Vysotskiy, V. Kulitskiy, S. Mironov, “Optimization of processing microstructure-properties relationship in friction-stir welded 6061-T6 aluminum alloy” , Materials Science and Engineer, Vol. 662, pp. 136–143, 2016.
    【15】刘静安,谢建新,大型铝合金型材挤压技术与工模具优化设计,冶金工业出版社, pp. 2-10, 2003。
    【16】胡立煒,機械材料與公差,北京理工大學出版社,pp. 33-34,2010。
    【17】吳政江,鋁合金5052與6061銲後熱處理機械性質研究,國立臺灣師範大學,碩士論文,pp.27-28,民國87年。
    【18】J. C. Lin, G. H. Zeng, T. Z. Teng, “Comparison of the corrosion behavior of AA5052 and AA6061 in HCl solutions”, Journal of Chinese Corrosion Engineering, Vol. 24, pp.1-8, 2010.
    【19】J. W. Martin, “Micromechanisms in particle-hardened alloys”, Cambridge University Press, pp.1~78, 1980.
    【20】A. Kelly, R. B. Nicholson, "Precipitation hardening", Progress in Metals Physics, Vol.10, pp151~292, 1963.
    【21】陳克昌,“非鐵金屬材料的熱處理”,材料科技,逢甲大學材料科學系,1983。
    【22】M. Thomas, D. Nicholas, Improvements relating to friction welding United , Kingdom, EP0615480B1, 1992.
    【23】薛鹏,张星星,吴利辉,“搅拌摩擦焊接与加工研究进展”,金属学报,Vol. 52(10), pp.1222-1238,2016。
    【24】Y. Li, L. Murr, J. Mcclure, “Flow visualization and residual microstructures associated with the friction-stir welding of 2024 and 6061 aluminum”, Materials Science and Engineering, Vol.271, pp. 213-223, 1999.
    【25】K. Fraser, L. Georges﹐“A mesh-free solid-mechanics approach for simulating the friction stir-welding process”﹐Joining Technology﹐pp.1-5, 2016.
    【26】 P. Sarathi,“Friction stir welding and processing”, Springer, pp.3-4, 2014.
    【27】 S. Kou, “Welding metallurgy” , Wiley-Interscience, pp.370-371, 2003.
    【28】I. Dinaharan,K. Kalaiselvan, “Influence of rice husk ash particles on microstructure and tensile behavior of AA6061 aluminum matrix composites produced using friction stir processing”, Composites Communications , Vol.3, pp.42-46, 2017.
    【29】S. Kumar , J. Mishra ,“Characterization and utilization of rice husk ash (RHA) in fly ash Blast furnace slag based geopolymer concrete for sustainable future” , Materials Today: Proceedings,2019.
    【30】Z. Zhang , X. Yang, J. Zhang,“Effect of welding parameters on microstructure and mechanical properties of friction stir spot welded 5052 aluminum alloy”, Materials&Design, Vol.32, pp.4461–4470, 2011.
    【31】A. Chidambaram, S. Bhole, “Metallographic preparation of aluminum alumina metalmatrix composites”, Materials Characterization, Vol.38, pp.187–191, 1997.
    【32】D. Ellis, “Joining of aluminium based metal matrix composites” , International Materials Reviews, Vol.41, pp.41–58, 1996.
    【33】R. Mishr, “Friction stir welding and processing” , Materials Science and Engineerimg, Vol.50, pp. 1–78, 2005.
    【34】L. Ceschini, I. Boromei, “Effect of friction stir welding on microstructure, tensile and fatigue properties of the AA7005/10 vol.% Al2O3p composite” , Composites Science and Technology , Vol.67, pp.605–615, 2007.
    【35】L. Marzoli, D. Santos, “Friction stir welding of an AA6061/Al2O3/20p reinforced alloy”, Composites Science and Technology, Vol. 66, pp.363–371, 2006.
    【36】P. Cavaliere, “Mechanical properties of friction stir processed 2618/Al2O3 metal matrix composite”, Science and Manufacturing, Vol.36, pp.1657–65, 2005.
    【37】S. Gopalakrishnan, N. Murugan, “Prediction of tensile strength of friction stir welded aluminium matrix TiCp particulate reinforced composite”, Materials and Design , Vol.32, pp.462–467, 2011.
    【38】H. Nami, H. Adgi, H. Shamabadi, “Microstructure and mechanical properties of friction stir welded Al/Mg2Si metal matrix cast composite”, Materials and Design , Vol.32, pp.976–983, 2011.
    【39】H. Uzun, “Friction stir welding of SiC particulate reinforced AA2124 aluminium alloy matrix composite”, Materials and Design , Vol.28, pp.1440–1446, 2007.
    【40】S. Saravanakumar, S. Gopalakrishnan, “Assessment of microstructure and wear behavior of aluminum nitrate reinforced surface composite layers synthesized using friction stir processing on copper substrate”, Surface and Coatings Technology, Vol.322, pp. 51-58, 2017.
    【41】S. Sahraeinejad, H. Izadi, M. Haghshenas, “Fabrication of metal matrix composites by friction stir processing with different particles and processing parameters”, Materials Science and Engineering, Vol.626, pp.505-513, 2015.
    【42】F. Khodabakhshi, P.Gerlich, “Fabrication of a high strength ultra-fine grained Al-Mg-SiC nanocomposite by multistep friction stir processing”, Materials Science and Engineering, Vol. 698, pp.313- 325, 2017.
    【43】M. Bodaghi, K. Dehghani,“friction stir welding of AA5052: the effects of SiC nano-particles addition”, Manufacturing Technology, Vol.88, pp.2651-2660, 2016.
    【44】N. Yuvaraj, S. Aravindan, “Fabrication of Al5083/B4C Surface Composite by friction stir processing and its tribological characterization”, Materials Research and Technology, Vol. 4, pp.398-410, 2015.
    【45】R. Sathiskumar, N. Murugan, “Characterization of boron carbide particulate reinforced in-situ copper surface composites synthesized using friction stir processing”, Materials Characterization, Vol.84, pp.16-27, 2013.
    【46】C. Y. Lee, W. B. Lee, “Lap joint properties of FSWed dissimilar formed 5052 Al and 6061 Al alloys with different thickness”, Materials Science and Engineering , Vol.43, pp.3296–3304, 2008.
    【47】A. Gerlich, P. Su, “Friction stir spot welding of aluminum and magnesium alloys”, Materials Science Forum, Vol.29, pp.290-294, 2005.
    【48】M. I. Khan, M. L. Kuntz, “Resistance and friction stir spot welding of DP600: a comparative study”, Science Technology, Vol,12, pp. 175–182, 2007.
    【49】Y. F. Sun, H. Fujii, “Novel spot friction stir welding of 6061 and 5052 Al alloys”, Science and Technology of Welding and Joining, Vol.16, pp. 612, 2011.
    【50】秦紅珊、楊新岐,“一種代替傳統電阻銲接的創新技術摩擦攪拌點銲”,電焊機學報,Vol.36,2006。
    【51】R. Kumar., V. Kannan, “Studies on effect of tool design and welding parameters on the friction stir welding of dissimilar aluminium alloys AA 5052 – AA 6061” , Procedia Engineering , Vol.75, pp.93 – 97, 2014.
    【52】M. Koilraj, V. Sundareswaran, “Friction stir welding of dissimilar aluminium alloys AA2219 to AA5083 – optimization of process parameters using Taguchi technique”, Materials and Design ,Vol.42, pp.1–7 , 2012.
    【53】Y. Sato, M. Urata, H. Kokawa, “Hall–Petch relationship in friction stir welds of equal channel angular-pressed aluminium alloys”, Material Science and Engineering , Vol.354 , pp. 298–305 , 2003.
    【54】Y. Chen , H. Wang , H. Li, “Investigation into the dissimilar friction stir welding of AA5052 and AA6061 aluminum alloys using pin-eccentric stir tool” , Metals, Vol. 9, p.718, 2019.
    【55】W. Li, Y. Gao, “Metal flow during friction stir welding of 7075-T651 aluminum alloy”, Experimental Mechanics, Vol.53, pp.1573–1582, 2013.
    【56】E. Sharghi, A. Farzadi, “Simulation of strain rate, materials flow, and nugget shape during dissimilar friction stir welding of AA6061 aluminum alloy and Al-Mg2Si composite”, Journal of Alloys and Compounds, Vol.748, pp.953–960, 2018.
    【57】朱 刚,赵海东,陈振明,“6061 和 SiCp/6061 合金时效析出动力学”, 中国有色金属学报,Vol.10,pp.1997-2004,2017。
    【58】蘇介賢,“6061 鋁合金均質化與高溫機械性質研究”,國立台灣大學,碩士論文,pp.79-85,1998。
    【59】吳灝展,“6系列與7系列鍛造用鋁合金之機械性質及微結構特性之探討,國立臺灣大學”,碩士論文,2013
    【60】G. Liu, L. E. Murr, “Microstructural aspects of the friction-stir welding of 6061-T6 aluminum” , Scripta Materialia , Vol. 37, pp. 355-361, 1997.
    【61】G. M. Reddy, P. Mastanaiah, K.S. Prasad, “Microstructure and mechanical property correlations in AA 6061 aluminium alloy friction stir welds”, Transactions of the Indian Institute of Metals, Vol. 62, pp. 49-58, 2009.
    【62】黃智威,“以摩擦攪拌製程製備具表面SiC顆粒強化之鋁基複材研究及其強化機理探討”,國立中正大學,博士論文,2019。
    【63】L. N. Tufaro, I. Manzoni, “Effect of heat input on AA5052 friction stir welds characteristics”, Procedia Materials Science, Vol.8, pp.914-923, 2015.
    【64】H. L. Hao, D. R. Ni, “Effect of welding parameters on microstructure and mechanical properties of friction stir welded Al-Mg-Er alloy”, Materials and Science Engineering, Vol.559, pp.889–896, 2013.
    【65】J. Schmale, A. Fehrenbacher, “Calibration of dynamic tool workpiece interface temperature measurement during friction stir welding”, Measurement, Vol.88, pp.331-342, 2016.

    無法下載圖示 電子全文延後公開
    2025/09/10
    QR CODE