簡易檢索 / 詳目顯示

研究生: 黃莘淯
Huang, Hsin-Yu
論文名稱: 以初級培養與小鼠模式確認對阿茲海默氏症有潛力之HDAC抑制劑
Identification of potential HDAC inhibitors for Alzheimer’s disease using primary culture and mouse model
指導教授: 謝秀梅
Hsieh, Hsiu-Mei
學位類別: 碩士
Master
系所名稱: 生命科學系
Department of Life Science
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 99
中文關鍵詞: 初級海馬迴細胞培養組織蛋白去乙醯酶抑制劑Aβ25-35寡聚體神經保護性效果焦慮短期記憶
英文關鍵詞: primary hippocampal neuronal culture, histone deacetylase inhibitor, oligomeric Aβ25-35, neuroprotection,, anxiety,, short-term memory
DOI URL: https://doi.org/10.6345/NTNU202204475
論文種類: 學術論文
相關次數: 點閱:169下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

阿茲海默氏症(Alzheimer’s disease, AD)為一種常見的神經退化性疾病伴隨著出現認知功能的障礙。其病理特徵主要包括了由tau蛋白過度磷酸化所導致的神經纖維糾結(neurofibrillary tangles, NFTs)、β類澱粉蛋白質(β-amyloid peptide; Aβ)堆積造成的類澱粉斑塊(plaques)以及神經的死亡,截至目前均沒有治療的方法。表觀遺傳(Epigenetics)中組織蛋白乙醯化(histone acetylation)以及去乙醯化(histone deacetylation)能夠調控基因的表達;透過組織蛋白去乙醯(histone deacetylase, HDAC)會將組織蛋白乙醯基團移除使組織蛋白更緊密地和DNA結合,並且抑制基因的轉錄進而導致疾病的產生,而組織蛋白去乙醯酶抑制劑(histone deacetylases inhibitor, HDACi)能夠改善基因轉錄的抑制,並且已被報導在多種神經退化性疾病中扮演神經保護的作用。在本研究中,我們將Aβ25-35寡聚體藥物施於初級海馬迴神經細胞培養中造成細胞毒性以篩選具有神經保護功效之HDACi,並將有效的HDACi施用於AD小鼠驗證其可緩解神經退化之效果,透過此研究找到有潛力之HDACi,並了解分子作用機制。
在初級細胞離體實驗中我們發現NC106藥物可以增加神經突起長度(neurite length)以及神經突起分枝(branch)的數目,而且進一步發現高劑量的NC106神經保護效果較低劑量強,因此使用NC106進行動物試驗。從動物實驗中也發現高劑量的NC106在改善焦慮行為及短期記憶方面比低劑量有較強的效果,並且可以減少Aβ堆積、tau蛋白磷酸化、神經發炎反應及增加血清素神經元數目及突觸前蛋白質synaptophysin的表現量以對抗海馬迴CA1急性注射Aβ25-35寡聚體於所造成的傷害。因此,我們認為NC106是一個有潛力的AD治療藥物。

Alzheimer’s disease (AD) is a neurodegenerative disorder that cause cognitive impairment. The pathological features of AD are neurofibrillary tangles (NFTs) cause by tau protein hyper-phosphorylation,insoluble β-amyloid (Aβ) plaques by Aβ accumulation, and neuron loss.There are no curative therapies currently available for AD patients until now. The control of histone acetylation and deacetylation has been recognized as one of major epigenetic regulatory mechanisms for specific gene expression. Histone deacetylases (HDACs) make the histones more tightly by removing the acetyl groups from histones, which in turn suppresses the gene transcription and causes many diseases. It has been reported that HDAC inhibitors (HDACi) could alleviate transcription suppression and show neuroprotective effect in several neurodegenerative diseases. In thisstudy, the mouse primary hippocampal neurons treated with oligomeric Aβ25-35was used to screen potential HDAC inhibitors forAD. The identified potential HDACi compound was applied to AD miceand the molecular mechanisms of the HDACi was further elucidated.We found that NC106 HDAC inhibitor could increase neuronal numbers, neuritic length, and branch numbersagainst the oligomeric Aβ25-35-induced neurotoxicityin primary hippocampal neuronal culture. In addition, we found that the neuroprotective effects of NC106 was better in high dose than in low dose in the primary hippocampal neuronal culture treated with oligomeric Aβ25-35. The administration of high doseNC106 also attenuated the anxiety and short-term memory of the AD mice. Reducing the levels of Aβ deposition, tau protein phosphorylation, neuroinflammation, and increasing the levels of presynaptic protein synaptophysin, serotonergic neurons were identified in the B6 mice with acute bilateral intrahippocampal CA1 injection of oligomeric Aβ25-35. Therefore,NC106 could be a potential therapeutic compoundfor AD.

1. 中文摘要 5 2. 英文摘要 7 3. 縮寫表 9 4. 研究背景 11 4.1 阿茲海默氏症(Alzheimer's disease, AD) 11 4.2 類澱粉蛋白 (β-amyloid, Aβ) 11 4.3 微管結合蛋白tau (Microtubuleassociated protein tau) 12 4.4 發炎反應 (Inflammation) 13 4.6 初級海馬迴神經細胞培養(Primary hippocampal neuronal culture) 13 4.7 組織蛋白去乙醯化酶抑制劑 (Histone deacetylase inhibitor, HDACi) 14 4.8 分泌單胺類神經傳導物質相關的腦區 15 4.9 大腦邊緣系統 16 4.10 NC106 16 4.11 NC107 16 5. 研究目的 17 6. 材料與方法 18 6.1實驗動物 18 6.2 初級海馬迴神經細胞培養與藥物處理 18 6.3 Aβ25-35寡聚體與NC106的製備 19 6.4 細胞免疫細胞染色(Immunocytochemistry, ICC) 19 6.5 乳酸脫氫酶分析(LDH assay) 20 6.6 細胞存活率分析(MTT assay) 20 6.7 動物實驗與藥物處理 21 6.8 免疫組織化學染色(Immunohistochemistry) 23 6.9 西方墨點法(Western blot) 24 6.10 統計分析(Statistical analysis) 25 7. 結果 26 7.1 建立小鼠初級海馬迴神經細胞培養作為初步篩藥系統 26 7.2 前處理NC106藥物對於初級海馬迴神經細胞具有神經保護功效 26 7.3 NC106後處理對於初級海馬迴神經細胞具有神經保護的功效 28 7.4 高劑量NC106藥物能緩解Aβ25-35寡聚體所造成的小鼠焦慮行為 29 7.5 NC106高劑量處理減緩Aβ25-35寡聚體所導致的短期記憶能力損傷 30 7.6 NC106減緩寡聚體Aβ25-35所導致的空間學習能力與長期記憶能力損傷 31 7.7 NC106及Aβ25-35寡聚體不影響抗氧化壓力指標MnSOD表現量 32 7.8 NC106減緩Aβ25-35寡聚體所導致的發炎反應 33 7.9 NC106減少Aβ25-35寡聚體所導致的tau蛋白過度磷酸化 34 7.10 處理NC106有效提升組織蛋白H3及α-tubulin乙醯化程度 35 7.11 NC106經由增加IDE蛋白質表現量有效改善類β類澱粉蛋白質堆積 36 7.12 NC106有效提升突觸素蛋白表現量 37 7.13 NC106有效提升血清素神經元數量但不影響膽鹼神經元及正腎上腺性神經元數目 37 8. 討論 39 9. 參考資料 42 10.圖表 47 11. 補充資料 95

Arvanitakis Z, Wilson RS, Bienias JL, Evans DA, Bennett DA (2004) Diabetes mellitus and risk of Alzheimer disease and decline in cognitive function. Archives of neurology 61:661-666.
Belgardt BF, Bruning JC (2010) CNS leptin and insulin action in the control of energy homeostasis. Annals of the New York Academy of Sciences 1212:97-113.
Arendt T (2009) Synaptic degeneration in Alzheimer's disease. Acta Neuropathol 118:167-179.
Blanco A, Alvarez S, Fresno M, Munoz-Fernandez MA (2010) Amyloid-beta induces cyclooxygenase-2 and PGE2 release in human astrocytes in NF-kappa B dependent manner. J Alzheimers Dis 22:493-505.
Blum KA, Advani A, Fernandez L, Van Der Jagt R, Brandwein J, Kambhampati S, Kassis J, Davis M, Bonfils C, Dubay M, Dumouchel J, Drouin M, Lucas DM, Martell RE, Byrd JC (2009) Phase II study of the histone deacetylase inhibitor MGCD0103 in patients with previously treated chronic lymphocytic leukaemia. Br J Haematol 147:507-514.
Boumber Y, Younes A, Garcia-Manero G (2011) Mocetinostat (MGCD0103): a review of an isotype-specific histone deacetylase inhibitor. Expert Opin Investig Drugs 20:823-829.
Chambon C, Wegener N, Gravius A, Danysz W (2011) Behavioural and cellular effects of exogenous amyloid-beta peptides in rodents. Behav Brain Res 225:623-641.
Chung H, Brazil MI, Soe TT, Maxfield FR (1999) Uptake, degradation, and release of fibrillar and soluble forms of Alzheimer's amyloid beta-peptide by microglial cells. J Biol Chem 274:32301-32308.
Chung YL, Lee MY, Pui NN (2009) Epigenetic therapy using the histone deacetylase inhibitor for increasing therapeutic gain in oral cancer: prevention of radiation-induced oral mucositis and inhibition of chemical-induced oral carcinogenesis. Carcinogenesis 30:1387-1397.
Coleman P, Federoff H, Kurlan R (2004) A focus on the synapse for neuroprotection in Alzheimer disease and other dementias. Neurology 63:1155-1162.
Darvesh S, Reid GA (2016) Reduced fibrillar beta-amyloid in subcortical structures in a butyrylcholinesterase-knockout Alzheimer disease mouse model. Chem Biol Interact.
Gasparini L, Dityatev A (2008) Beta-amyloid and glutamate receptors. Exp Neurol 212:1-4.
Hooper PL, Durham HD, Torok Z, Hooper PL, Crul T, Vigh L (2016) The central role of heat shock factor 1 in synaptic fidelity and memory consolidation. Cell Stress Chaperones.
Huang J, Chen YJ, Bian WH, Yu J, Zhao YW, Liu XY (2010) Unilateral amyloid-beta25-35 injection into the rat amygdala increases the expressions of aberrant tau phosphorylation kinases. Chin Med J (Engl) 123:1311-1314.
Ishizuka Y, Shimizu H, Takagi E, Kato M, Yamagata H, Mikuni M, Shirao T (2014) Histone deacetylase mediates the decrease in drebrin cluster density induced by amyloid beta oligomers. Neurochem Int 76:114-121.
Jiang X, Tian Q, Wang Y, Zhou XW, Xie JZ, Wang JZ, Zhu LQ (2011) Acetyl-L-carnitine ameliorates spatial memory deficits induced by inhibition of phosphoinositol-3 kinase and protein kinase C. J Neurochem 118:864-878.
Johnstone SE, Baylin SB (2010) Stress and the epigenetic landscape: a link to the pathobiology of human diseases? Nat Rev Genet 11:806-812.
Kaminsky YG, Marlatt MW, Smith MA, Kosenko EA (2010) Subcellular and metabolic examination of amyloid-beta peptides in Alzheimer disease pathogenesis: evidence for Abeta(25-35). Exp Neurol 221:26-37.
Karran E, Mercken M, De Strooper B (2011) The amyloid cascade hypothesis for Alzheimer's disease: an appraisal for the development of therapeutics. Nat Rev Drug Discov 10:698-712.
Kaytor MD, Orr HT (2002) The GSK3 beta signaling cascade and neurodegenerative disease. Curr Opin Neurobiol 12:275-278.
Kim HG, Jeong HU, Hong SI, Oh MS (2015) Houttuyniae Herba Attenuates Kainic Acid-Induced Neurotoxicity via Calcium Response Modulation in the Mouse Hippocampus. Planta Med.
Lucas JJ, Hernandez F, Gomez-Ramos P, Moran MA, Hen R, Avila J (2001) Decreased nuclear beta-catenin, tau hyperphosphorylation and neurodegeneration in GSK-3beta conditional transgenic mice. EMBO J 20:27-39.
Matamoros AJ, Baas PW (2016) Microtubules in health and degenerative disease of the nervous system. Brain Res Bull.
Meyer-Luehmann M, Spires-Jones TL, Prada C, Garcia-Alloza M, de Calignon A, Rozkalne A, Koenigsknecht-Talboo J, Holtzman DM, Bacskai BJ, Hyman BT (2008) Rapid appearance and local toxicity of amyloid-beta plaques in a mouse model of Alzheimer's disease. Nature 451:720-724.
Mudher A, Lovestone S (2002) Alzheimer's disease-do tauists and baptists finally shake hands? Trends Neurosci 25:22-26.
Nalivaeva NN, Belyaev ND, Kerridge C, Turner AJ (2014) Amyloid-clearing proteins and their epigenetic regulation as a therapeutic target in Alzheimer's disease. Front Aging Neurosci 6:235.
Nautiyal KM, Tritschler L, Ahmari SE, David DJ, Gardier AM, Hen R (2016) A Lack of Serotonin 1B Autoreceptors Results in Decreased Anxiety and Depression-Related Behaviours. Neuropsychopharmacology.
Noble W, Planel E, Zehr C, Olm V, Meyerson J, Suleman F, Gaynor K, Wang L, LaFrancois J, Feinstein B, Burns M, Krishnamurthy P, Wen Y, Bhat R, Lewis J, Dickson D, Duff K (2005) Inhibition of glycogen synthase kinase-3 by lithium correlates with reduced tauopathy and degeneration in vivo. Proc Natl Acad Sci U S A 102:6990-6995.
Nuydens R, Dispersyn G, de Jong M, van den Kieboom G, Borgers M, Geerts H (1997) Aberrant tau phosphorylation and neurite retraction during NGF deprivation in PC12 cells. Biochem Biophys Res Commun 240:687-691.
Orsolini L, Tomasetti C, Valchera A, Iasevoli F, Buonaguro EF, Vellante F, Fornaro M, Fiengo A, Mazza M, Vecchiotti R, Perna G, de Bartolomeis A, Martinotti G, Di Giannantonio M, De Berardis D (2016) New advances in the treatment of generalized anxiety disorder: the multimodal antidepressant vortioxetine. Expert Rev Neurother 16:483-495.
Pajouhesh H, Lenz GR (2005) Medicinal chemical properties of successful central nervous system drugs. NeuroRx 2:541-553.
Psotta L, Rockahr C, Gruss M, Kirches E, Braun K, Lessmann V, Bock J, Endres T (2015) Impact of an additional chronic BDNF reduction on learning performance in an Alzheimer mouse model. Front Behav Neurosci 9:58.
Rej S, Looper K, Segal M (2013) The effect of serum lithium levels on renal function in geriatric outpatients: a retrospective longitudinal study. Drugs Aging 30:409-415.
Savioz A, Giannakopoulos P, Herrmann FR, Klein WL, Kovari E, Bouras C, Giacobini E (2016) A Study of Abeta Oligomers in the Temporal Cortex and Cerebellum of Patients with Neuropathologically Confirmed Alzheimer's Disease Compared to Aged Controls. Neurodegener Dis 16:398-406.
Sawas A, Radeski D, O'Connor OA (2015) Belinostat in patients with refractory or relapsed peripheral T-cell lymphoma: a perspective review. Ther Adv Hematol 6:202-208.
Seibenhener ML, Wooten MW (2012) Isolation and culture of hippocampal neurons from prenatal mice. J Vis Exp.
Smith AE, Xu Z, Lai YY, Kulkarni PM, Thakur GA, Hohmann AG, Crystal JD (2016) Source memory in rats is impaired by an NMDA receptor antagonist but not by PSD95-nNOS protein-protein interaction inhibitors. Behav Brain Res 305:23-29.
Son SM, Kang S, Choi H, Mook-Jung I (2015) Statins induce insulin-degrading enzyme secretion from astrocytes via an autophagy-based unconventional secretory pathway. Mol Neurodegener 10:56.
Suresh PS, Devaraj VC, Srinivas NR, Mullangi R (2016) Review of bioanalytical assays for the quantitation of various HDAC inhibitors such as vorinostat, belonistat, panobinostat, romidepsin and chidamine. Biomed Chromatogr.
Wang CY, Cheng CW, Wang WH, Chen PS, Tzeng SF (2015) Postnatal Stress Induced by Injection with Valproate Leads to Developing Emotional Disorders Along with Molecular and Cellular Changes in the Hippocampus and Amygdala. Mol Neurobiol.
Xu K, Dai XL, Huang HC, Jiang ZF (2011) Targeting HDACs: a promising therapy for Alzheimer's disease. Oxid Med Cell Longev 2011:143269.
Xuan AG, Pan XB, Wei P, Ji WD, Zhang WJ, Liu JH, Hong LP, Chen WL, Long DH (2015) Valproic acid alleviates memory deficits and attenuates amyloid-beta deposition in transgenic mouse model of Alzheimer's disease. Mol Neurobiol 51:300-312.
Zhang Z, Zhao R, Qi J, Wen S, Tang Y, Wang D (2011) Inhibition of glycogen synthase kinase-3beta by Angelica sinensis extract decreases beta-amyloid-induced neurotoxicity and tau phosphorylation in cultured cortical neurons. J Neurosci Res 89:437-447.

下載圖示
QR CODE