簡易檢索 / 詳目顯示

研究生: 張惠鈞
Chang, Hui-Chun
論文名稱: 基於定位摩克樹區塊鏈存證的分散式綠電憑證發放與稽核之實作與研究
Tp-Merkle Tree-based Attestation of Decentralized Issuance and Auditing of Renewable Energy Certificates Using Blockchain
指導教授: 黃冠寰
Hwang, Gwan-Hwan
口試委員: 林哲生
Lin, Che-Sheng
張道顧
Chang, Tao-Ku
黃冠寰
Hwang, Gwan-Hwan
口試日期: 2025/01/16
學位類別: 碩士
Master
系所名稱: 資訊工程學系
Department of Computer Science and Information Engineering
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 46
中文關鍵詞: 公有區塊鏈智能合約定位摩克樹資料存證綠電憑證分散式稽核
英文關鍵詞: Public blockchain, Smart contract, tp-Merkle tree, Data attestation, Renewable energy certificate, Decentralized audit
研究方法: 實驗設計法
論文種類: 學術論文
相關次數: 點閱:6下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在環保意識日趨重要的時代,再生能源成了各國努力發展的重點,綠電憑證作為再生能源的來源認證,在綠電交易市場中扮演重要角色。然而,現行的綠電憑證系統過於中心化,所有憑證均由國家再生能源憑證中心查核與發放,不僅認證過程透明度不足,更存在資料安全風險。由於缺乏完整的發電履歷追蹤機制,綠電憑證難以完全杜絕電量重複計算的疑慮。此外,家用太陽能板等小型發電設備,因發電量小且因憑證中心人工審核成本高,面臨申請與稽核困難。
    為解決上述問題,本文提出一種結合區塊鏈與定位摩克樹(tp-Merkle tree)[20]技術之資料存證與稽核方法作為解決方案。透過區塊鏈的不可竄改、公開透明和去中心化特性,實行綠電資料存證,藉此保障資料的安全性。然而,擁有較高安全性的公有區塊鏈面臨了存證成本高昂的問題,若要對發電資料逐筆存證實務上並不可行,因此本論文採用定位摩克樹技術將發電資料存證,利用一筆鏈上紀錄即可稽核多筆鏈下發電資料,實現了利用智能合約在公有區塊鏈進行存證的低成本分散式綠電憑證發放與稽核方案。此外,透過結合前述技術產出的區塊鏈密碼學證據,檢驗存證資料是否存在時間重疊,便能快速稽核電量重複計算的問題。
    這些方法能確保憑證可信度,並且加強綠電履歷的可追溯性,提供小型電站更具經濟效益的稽核方式,增加小型電站參與綠能生態系的可能性,也能有效解決現行憑證發放與稽核的效率問題。

    In the era where people's environmental awareness has raised, green energy has become a key focus for countries worldwide. Renewable Energy Certificates (RECs), also known as Green Energy Certificates, play a crucial role in the green electricity trading market as the certification of the renewable energy sources. However, current green electricity certificate systems are overly centralized, with all certificates being verified and issued by the National Renewable Energy Certificate Center. The existing approach leads to insufficient transparency in the certification process and potential data security risks. Due to the absence of a comprehensive mechanism for tracking power generation history, green electricity certificates cannot eliminate concerns about double counting of electricity. Furthermore, small-scale power stations, such as household solar panels, face difficulties in applying for and undergoing audits due to their relatively low power generation, and the manual verification costs can impose a significant burden on the certificate center.
    To address these issues, this paper proposes a solution combining blockchain technology with a tp-Merkle tree[20] data attestation and auditing method. By leveraging the immutable, transparent, and decentralized nature of blockchain, green energy data can be securely attested, thus ensuring data security. However, public blockchains with higher security face the challenge of high attestation costs, making it impractical to attest power generation data on a transaction-by-transaction basis. Therefore, this paper proposes the use of tp-Merkle tree technology to attest power generation data, utilizing a single on-chain record to verify multiple off-chain power generation data, providing a low-cost, decentralized solution for issuing and auditing green electricity certificates through smart contracts on public blockchains. Moreover, by integrating the proof generated from the technologies, the system can efficiently verify whether the attested data contains time overlapping, thereby solving the issue of inefficient double counting electricity validation.
    These methods ensure the credibility of the certificates and enhances the traceability of green electricity records, offering a more economically viable audit approach for small-scale power stations. It also increases the potential for small-scale power stations to participate in the green energy ecosystem, and effectively solves the efficiency problem of the current certificate issuance process.

    第一章 緒論 1 第一節 研究背景 1 一、綠電憑證介紹 1 二、現行綠電憑證發放架構 1 第二節 研究目的 2 一、綠電憑證中心化問題 2 二、小型電站審核及稽核成本高 2 三、電量重複計算之問題 3 第三節 論文貢獻 4 一、區塊鏈擴容解決方法 4 二、小規模電量之聚合及稽核方法 4 第二章 文獻探討 5 第一節 區塊鏈 5 一、區塊鏈核心價值 5 二、區塊鏈難題 6 三、區塊鏈類型 7 四、Layer-2擴容方法 7 第二節 摩克樹(Merkle Tree)擴容方法 9 一、傳統摩克樹 9 二、定位摩克樹 11 第三節 零知識證明 14 一、零知識證明概念 14 二、零知識證明運用於綠電憑證之效益 14 第三章 系統架構 17 第一節 使用定位摩克樹之區塊鏈存證 17 一、定位摩克樹存證方法 17 二、使用Chain hash之區塊鏈合約紀錄 18 三、存證資料之密碼學證據(Proof token) 20 第二節 小點數電量聚合與重複計算之稽核 23 一、小點數電量聚合 23 二、電量重複計算之稽核 24 第三節 憑證發放 25 一、發電資料存證及清算上鏈 26 二、產出密碼學證據(Proof token) 27 三、憑證聚合 28 第四節 驗證方法 29 一、驗證Proof token完整性 29 二、驗證Proof token時間範圍是否重疊 30 三、驗證綠電憑證聚合度數 31 第四章 實驗成果與分析 33 第一節 實驗設計 33 一、實驗環境 33 二、發電數據及系統上鏈設定值 33 三、實驗類別 34 第二節 實驗結果 35 一、平行化驗證 35 二、不同時間區間之Proof Token的選擇 37 三、電量重複計算之驗證時間成本 39 四、模擬多裝置案場 40 第三節 系統規模分析 40 第五章 結論及未來研究方向 42 第一節 研究結論 42 第二節 未來研究方向 43 一、效能優化 43 二、資料壓縮 43 三、結合同質化代幣 44 參考文獻 45

    [1] Technical Guidance & FAQs. Climate Group RE100. https://www.there100.org/technical-guidance
    [2] Renewable Energy Certificates (RECs). US EPA. https://www.epa.gov/green-power-markets/renewable-energy-certificates-recs
    [3] 任務與願景. T-REC. https://www.trec.org.tw/page/zh-tw_mission_vision
    [4] 再生能源憑證制度及綠電交易介紹. T-REC. https://www.trec.org.tw/documents/81.pdf
    [5] 再生能源憑證申請及管理作業程序. T-REC. https://www.trec.org.tw/page/再生能源憑證申請及管理作業程序
    [6] 再生能源憑證規費. T-REC. https://www.trec.org.tw/page/再生能源憑證規費
    [7] 再生能源電力及憑證媒合服務作業程序. T-REC. https://www.trec.org.tw/page/再生能源電力及憑證媒合服務作業程序
    [8] 綠電價格是多少?綠電交易價格、綠能憑證價格、買綠電優點解析, 陽光伏特家. https://blog.sunnyfounder.com/price-of-green-power/
    [9] 臺北市氣候|臺北市氣候時間數列統計資料. 政府資料開放平臺. https://data.gov.tw/dataset/136718
    [10] 怎麼買綠電?交易前先具備什麼概念?翻譯米糕告訴你. 環境資訊中心. https://e-info.org.tw/node/215310.
    [11] Double Counting. US EPA. https://www.epa.gov/green-power-markets/double-counting
    [12] 黃鯤義(2024)。使用定位摩克樹作資料存證的應用研究。國立臺灣師範大學資訊工程學系博士論文,臺北市。取自https://hdl.handle.net/11296/afd3es。
    [13] A. Hafid, A. S. Hafid and M. Samih, "Scaling Blockchains: A Comprehensive Survey," in IEEE Access, vol. 8, pp. 125244-125262, 2020.
    [14] 平台介紹. 司法聯盟鏈共同驗證平台. https://b-jade.moj.gov.tw/Default.aspx
    [15] Binance Academy. (May 15, 2024). A Beginner's Guide to Bitcoin's Lightning Network. Binance Academy. https://academy.binance.com/en/articles/what-is-lightning-network
    [16] Joseph poon, & Vitalik buterin. (2017, August 11). Plasma: Scalable Autonomous Smart Contracts. Plasma. https://plasma.io/plasma.pdf
    [17] L. T. Thibault, T. Sarry and A. S. Hafid, "Blockchain Scaling Using Rollups: A Comprehensive Survey," in IEEE Access, vol. 10, pp. 93039-93054, 2022, doi: 10.1109/ACCESS.2022.3200051.
    [18] ZK Tech. Web3, aggregated.. Polygon. https://polygon.technology/
    [19] Mihailo bjelic, Sandeep nailwal, Amit chaudhary, & Wenxuan deng. POL: One Token for All Polygon Chains. Polygon. https://polygon.technology/papers/pol-whitepaper
    [20] G. -H. Hwang and H. -F. Chen, "Efficient Real-Time Auditing and Proof of Violation for Cloud Storage Systems," 2016 IEEE 9th International Conference on Cloud Computing (CLOUD), San Francisco, CA, USA, 2016, pp. 132-139.
    [21] Hwang, G. H., Chen, P. H., Lu, C. H., Chiu, C., Lin, H. C., & Jheng, A. J. (2018). InfiniteChain: A multi-chain architecture with distributed auditing of sidechains for public blockchains. In S. Chen, L.-J. Zhang, & H. Wang (Eds.), Blockchain – ICBC 2018 - 1st International Conference, Held as Part of the Services Conference Federation, SCF 2018, Proceedings (pp. 47-60).
    [22] 黃英睿(2020)。tp-Merkle tree 提高公有區塊鏈交易速度之研究。國立臺灣師範大學資訊工程學系碩士論文,臺北市。取自https://hdl.handle.net/11296/3g7hz3。
    [23] 王鴻(2023)。以零知識證明實現於公有區塊鏈進行綠電憑證之發放及稽核。國立臺灣師範大學資訊工程學系碩士論文,臺北市。取自https://hdl.handle.net/11296/r3xhje。

    下載圖示
    QR CODE