簡易檢索 / 詳目顯示

研究生: 江培成
Jiang, Pei-Cheng
論文名稱: 鈷,鐵與紅熒烯在銥(111)上的表面結構與磁性研究
Surface structure and magnetic properties for Co, Fe and rubrene on Ir(111)
指導教授: 蔡志申
Tsay, Jyh-Shen
蘇維彬
Su, Wei-Bin
學位類別: 博士
Doctor
系所名稱: 物理學系
Department of Physics
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 70
中文關鍵詞: magneticcobaltironIr(111)surface magneto-optic Kerr effectultrahigh vacuumfilmrubrene
英文關鍵詞: magnetic, cobalt, iron, Ir(111), surface magneto-optic Kerr effect, ultrahigh vacuum, film, rubrene
DOI URL: https://doi.org/10.6345/NTNU202202010
論文種類: 學術論文
相關次數: 點閱:93下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 無中文摘要

    In recent years, the surface and interfaces interactions play an important role in developing of spintronic application. There are many interfacial phenomenon such as exchange couple, multiferroic, spin-reorientation transition, magnetic proximity effect. According to the transition metals grown on Ir may present large lattice mismatch at the surface and interface, the Fe and Co grown on Ir both show unique interfacial phenomena. The magnetic properties are investigated by surface magneto-optic Kerr effect (SMOKE). The structures are investigated by low-energy electron diffraction (LEED) and scanning tunneling microscopy (STM). The chemical state of interfaces are investigated by Auger electron spectroscopy (AES). In addition, because of the possible functional applications in semiconductor devices, metal-semiconductor interfaces are also attentive in decades. The most interesting material is organic-semiconductor due to the potential uses of low-cost and flexible-substrate-based electronic devices. According to the Ir substrate is high interactive to carbon atoms, the self-assemble Rubrene film grown on Ir is also observed by STM technique. On the other hand, the transition metals are highly reactive at the interface of the semiconductor substrate such as Si in production process. Thus, the silicide formation at interfaces are also attentive. The morphologies combining chemical states for Ni grown on Si(111) are investigated. Furthermore, the Ni silicide formation is observed and identified at the Ni/Si interface. No matter metal/metal, molecule/metal or metal/semiconductor interface, the interfacial phenomena are investigated and show great potential for applied devices.

    Abstract I List of acronyms and abbreviations IV Chapter 1. Introduction 1 Chapter 2. Experiment 4 2.1 Ultrahigh vacuum system 4 2.2 Auger electron spectroscopy 5 2.3 Low-energy electron diffraction 6 2.4 Scanning tunneling microscope 8 2.5 Surface magneto-optic Kerr effect 9 Chapter 3. Fundamental theorem 15 3.1 Growth mode 15 3.2 Magnetism of nanoscale films 17 Chapter 4. Instrumental setup 20 Chapter 5. Surface structure and related magnetic properties for Co and Fe on Ir(111) 29 Chapter 6. A novel method for fabricating superparamagnetic films and the underlying mechanism 44 Chapter 7. Layered structure for rubrene on Ir(111) 55 Chapter 8. Influence of Ni depositied on Si(111)-7x7 59 Conclusion 64 Reference 67

    [1] Tonkikh, A.A. et al. Structural and electronic properties of epitaxial multilayer h-BN on Ni(111) for spintronics applications. Sci Rep 6, 23547 (2016).
    [2] Krishna, V.D., Wu, K., Perez, A.M. & Wang, J.P. Giant Magnetoresistance-based Biosensor for Detection of Influenza A Virus. Front. Microbiol. 7, 400 (2016).
    [3] Lachman, E.O. Visualization of superparamagnetic dynamics in magnetic topological insulators. Sci. Adv. 1, e1500740 (2015).
    [4] Mandal, S. & Saha, S.K. Ni/graphene/Ni nanostructures for spintronic applications. Nanoscale. 4, 986-990 (2012).
    [5] Feng, C. et al. Construction of FeN alloy films with ultra-strong magnetism and tunable magnetic anisotropy for spintronic application. J. Alloy. Compd. 725, (2017).
    [6] Gaster, R.S. et al. Matrix-insensitive protein assays push the limits of biosensors in medicine. Nat. Med. 15, 1327-1332 (2009).
    [7] Changa, S.C., Tsay, J.S., Chang, C.H.T. & Yao, Y.D. Pinning of magnetic moments at the interfacial region of ultrathin CoO/Co bilayers grown on Ge(100). Appl. Sur. Sci. 354, 95–99 (2015).
    [8] Nogués, J. & Schuller, I. K. Exchange bias. J. Magn. Magn. Mater. 192, 203-232 (1999).
    [9] Raji, G. R. et al. Martensitic transition, spin glass behavior and enhanced exchange bias in Si substituted Ni50Mn36Sn14 Heusler alloys. RSC Adv. 6, 32037–32045 (2016).
    [10] Qian, T. et al. Exchange bias tuned by cooling field in phase separated Y0.2Ca0.8MnO3. Appl. Phys. Lett. 90, 012503 (2007).
    [11] Lee, J.W., Jeong, J.R., & Shin, S.C. Spin-reorientation transitions in ultrathin Co films on Pt(111) and Pd(111) single-crystal substrates. Phys. Rev. B 66, 172409 (2002).
    [12] Shern, C.S., Tsay, J.S., Her, H.Y., Wu, Y.E. & Chen, R.H. Response and enhancement of surface magneto-optic Kerr effect for Co–Pt(111) ultrathin films and surface alloy. Sur. Sci. 429, L497-L502 (1999).
    [13] Lin, C.L., Wu, A.W., Wang, Y.C., Tseng, Y.C. & Tsay, J.S. Spin reorientation transitions and structures of electrodeposited Ni/Cu(100) ultrathin films with and without Pb additives. Phys. Chem. Chem. Phys. 15, 2360-2367 (2013).
    [14] Chappert, C., Fert, A. & Dau, F. N. V. The emergence of spin electronics in data storage. Nat. Mater. 6, (2007).
    [15] Kang, S.H. & Lee, K. Emerging materials and devices in spintronic integrated circuits for energy-smart mobile computing and connectivity. Acta Mater. 61, 952-973 (2013).
    [16] Gupta, R.K., Ghosh, K. & Kahol, P.K. Room temperature ferromagnetic multilayer thin film based on indium oxide and Fe oxide for transparent spintronic applications Mater. Lett. 64, 2022-2024 (2010).
    [17] Kudrnovsky, J. et al. Substrate-induced antiferromagnetism of a Fe monolayer on the Ir(001) surface. Phys. Rev. B 80, 064405 (2009).
    [18] Chang, S.C., Tsay, J.S., Chang, C.H.T. & Yao, Y.D. Pinning of magnetic moments at the interfacial region of ultrathin CoO/Co bilayers grown on Ge(100). Appl. Sur. Sci. 354, 95–99 (2015).
    [19] Jeon, K.R. et al. Voltage tuning of thermal spin current in ferromagnetic tunnel contacts to semiconductors. Nature Mater. 13, 360 (2014).
    [20] Taniyama, T., Wada, E., Itoh, M. & Yamaguchi, M. Electrical and optical spin injection in ferromagnet/semiconductor heterostructures. NPG Asia Mater. 3, 65 (2011).
    [21] Kang, S., Brewer, G., Sapkota, K.R., Pegg, I.L. & Philip, J. Electrical and Magnetic Properties of Higher Manganese Silicide Nanostructures. IEEE Trans. Nanotechnol. 11, 437 (2012).
    [22] Lund, I.N., Lee, J.H., Efstathiadis, H., Haldar, P. & Geer, R.E. Influence of catalyst layer thickness on the growth of nickel silicide nanowires and its application for Li-ion batteries. J. Power Sources 246, 117 (2014).
    [23] Zilani, M.A.K., et al. Nucleation of cobalt silicide islands on Si(111)-7×7 J. Phys. Condens. Matter 18, 6987 (2006).
    [24] Busse, H. et al. Metastable iron silicide phase stabilized by surface segregation on Fe3Si(100). Surf. Sci. 381, 133 (1997).
    [25] Hou, Y.J. et al. Structural determination and magnetic properties for Co–rubrene composite films on Si(100). Appl. Surf. Sci. 354, 139 (2015).
    [26] Hasegawa, T. & Takeya, J. Organic field-effect transistors using single crystals. Sci. Technol. Adv. Mater. 10, 024314 (2009).
    [27] Biaggio, I. & Irkhin, P. Extremely efficient exciton fission and fusion and its dom-inant contribution to the photoluminescence yield in rubrene single crystals. Appl. Phys. Lett. 103, 263301 (2013).
    [28] Verreet, B., Heremans, P., Stesmans, A. & Rand, B.P. Microcrystalline organic thin-film solar cells, Adv. Mater. 25, 5504–5507 (2013).
    [29] Podzorov, V. Organic single crystals: addressing the fundamentals of organicelectronics. MRS Bull. 38, 15–27 (2013).
    [30] N’Diaye, A. T, Coraux, J., N Plasa, T., Busse, C. & Michely, T. Structure of epitaxial graphene on Ir(111). New J. Phys. 10, 043033 (2008).
    [31] Tsay, J.S., Fu, T.Y., Lin, M.H., Yang, C.S. & Yao, Y.D. Microscopic interfacial structures and magnetic properties of ultrathin Co∕Si(111) Co∕Si(111) films. Appl. Phys. Lett. 88, 102506 (2006).
    [32] Tsay, J.S. & Yao, Y.D. Magnetic phase diagram of ultrathin Co/Si(111) film studied by surface magneto-optic Kerr effect. Appl. Phys. Lett. 74, 1311 (1999).
    [33] Cassidy, C. et al. Endotaxially stabilized B2-FeSi nanodots in Si (100) via ion beam co-sputtering. Appl. Phys. Lett. 104, 161903 (2014).
    [34] Hattori, A.N. et al. Systematic study of surface magnetism in Si(111)–Fe system grown by solid phase epitaxy: In situ schematic magnetic phase diagram of Si(111)–Fe. J. Magn. Magn. Mater. 363, 158 (2014).
    [35] Molina-Ruiz, M. et al. Formation of Pd2Si on single-crystalline Si (100) at ultrafast heating rates: An in-situ analysis by nanocalorimetry. Appl. Phys. Lett. 102, 143111 (2013).
    [36] Tsay, J.S., Yao, Y.D. & Liou, Y. Magnetic phase diagram study of ultrathin Co/Si(111) films. Surf. Sci. 856, 454-456 (2000).
    [37] Liu, X.Y., Zou, Z.Q., Sun, L.M. & Li, X. Scanning tunneling microscope study of electrical transport properties of nanoscale Schottky contacts between manganese silicide nanostructures and Si(111). Appl. Phys. Lett. 103, 043116 (2013).
    [38] Okuharaa, Y. et al. Solar-selective absorbers based on semiconducting β-FeSi2for efficient photothermal conversion at high temperature. Sol. Energy Mater. Sol. Cells. 161, 240–246 (2017).
    [39] Tripathia, J.K. et al. Self-organized growth and magnetic properties of epitaxial silicide nanoislands. Appl. Surf. Sci. 391, 24–32 (2017).
    [40] Kittla, J.A. et al. Ni- and Co-based silicides for advanced CMOS applications. Microelectron. Eng. 70, 158–165 (2003).
    [41] Abbes, O., Melhem, A., Boulmer-Leborgne, C. & Semmar, N. Establishment of optimized metallic contacts on silicon for thermoelectric applications. Adv. Mater. Lett. 6, 961-964 (2015).
    [42] Lund, I. N., Lee, J. H., Efstathiadis, H., Haldar, P. & Geer, R. E. Influence of catalyst layer thickness on the growth of nickel silicide nanowires and its application for Li-ion batteries. J. Power Sources 246, 117-123 (2014).
    [43] Li, F. et al. Synthesis of core–shell architectures of silicon coated on controllable grown Ni-silicide nanostructures and their lithium-ion battery application. Cryst. Eng. Comm. 15, 7298–7306 (2013).
    [44] Zhang, H.L., Li, F., Liu, C. H. & Cheng, M. The facile synthesis of nickel silicide nanobelts and nanosheets and their application in electrochemical energy storage. Nanotechnol. 19, 165606 (2008).
    [45] Chen, W.R. et al. Formation of stacked Ni silicide nanocrystals for nonvolatile memory application. Appl. Phys. Lett. 90 112108 (2007).
    [46] Chen, W.H. et al. Structure Related Magnetic Dead Layer for Ultrathin Fe/Ir(111) Films. IEEE Trans. Magn. 50, 2000304 (2014).
    [47] Etrl, G. & Küppers, J. Low Energy Electrons and Surface Chemistry. Weinheim, Germany: VCH, (1985).
    [48] May, J. W. & Germer, L. H. Adsorption of Carbon Monoxide on a Tungsten (110) Surface. J. Chen. Phys. 44, 2895. (1966).
    [49] Oura, K., Lifshifts, V.G., Saranin, A.A., Zotov A. V. & Katayama, M. Surface Science. Springer-Verlag, Berlin Heidelberg New York. pp. 1–45 (2003)
    [50] Feynman, R., QED the Strange Theory of Light and matter, Penguin 1990 Edition, page 84.
    [51] Silien, C., Pradhan, N. A., Ho, W. & Thiry, P. A. Influence of adsorbate-substrate interaction on the local electronic structure of C60 studied by low-temperature STM. Phys. Rev. B 69, 115434 (2004)
    [52] Leea, J. Y. & Kwon, J. H. The effect of C60 doping on the device performance of organic light-emitting diodes. Appl. Phys. Lett. 86, 063514 (2005)
    [53] Kerr, J. Magneto-optical Kerr effect. Rept. Brit. Assoc. Adv. Sci. 40, (1876).
    [54] Bader, S. D., Moog, E. R. & Grunberg, P. Magnetic hysteresis of epitaxially-deposited Fe in the monolayer range: A Kerr effect experiment in surface magnetism, J. Magn. Magn. Mater. 53, L295 (1986).
    [55] Qiu, Z .Q. & Bader, S.D. Surface magneto-optic Kerr effect. Rev. Sci. Instrum. 71, 1247 (2000).
    [56] Qiu, Z. Q., Pearson, J. & Bader, S. D. Oscillatory interlayer magnetic coupling of wedged Co/Cu/Co sandwiches grown on Cu(100) by molecular beam epitaxy, Phys. Rev. B 45, 7211 (1992).
    [57] Jiles, D. Introduction to Magnetism and Magnetic Materials. Chapman & Hall, London (1991).
    [58] de Boer, F. R., Boom, R., Mattens, W. C. M., Miedema, A. R. & Niessen, A. K. Cohesion in Metal. North-Holland, Amsterdam (1988).
    [59] Alberto, P. & Villain, J. Physics of Crystal Growth. Cambridge: Cambridge University Press. (1998)
    [60] Oura, K., Lifshits, V.G., Saranin, A.A., Zotov, A.V. & Katayama, M. Surface Science, An Introduction. Springer, Berlin (2003)
    [61] Johnson, M.T., Bloemen, P.J.H., den Broeder, F.J.A. & de Vries, J.J. Magnetic anisotropy in metallic multilayers. Rep. Prog. Phys. 59, (1996).
    [62] Cullity, B.D. & Graham, C.D. Introduction to Magnetic Materials. John Wiley & Sons, New Jersey (2005).
    [63] Cullity, B.D. Introduction to Magnetic Materials. Reading, Mass., Addison-Wesley Publishing Co. (1972).
    [64] Knobel, M. et al. Superparamagnetism and Other Magnetic Features in Granular Materials: A Review on Ideal and Real Systems. J. Nanosci. Nanotechnol. 8, (2008).
    [65] Nicolaides, R. et al. Scanning tunneling microscope tip structures. J. Vac. Sci. Technol. A 6, 445 (1988).
    [66] Ibe, J.P. et al. On the electrochemical etching of tips for scanning tunneling microscopy. J. Vac. Sci. Technol. A. 8, 3570 (1990).
    [67] Pivetta M. Blüm, M.C. Patthey, F. & Schneider, W.D. Two-Dimensional Tiling by Rubrene Molecules Self-Assembled in Supramolecular Pentagons, Hexagons, and Heptagons on a Au(111) Surface. Angew. Chem. Int. Ed. 47, 1076 –1079 (2008).
    [68] Land, T.A. STM investigation of single layer graphite structures produced on Pt(111) by hydrocarbon decomposition. Sur. Sci. 264, 261-270 (1992).
    [69] Andersson, P.G. Ir Catalysis. Platin. Met. Rev. 56, 25–28 (2012).
    [70] Comrie. C.M. & Weinberg, W.H. The chemisorption of carbon monoxide on the Ir (III) surface. J. Chem. Phys. 64, 250 (1976).
    [71] Tsay, J.S. & Chen, Y.S. Oxygen adsorption on ultrathin Co/Ir(111) films: Compositional anomaly. Surf. Sci. 600, 3555–3559 (2006).
    [72] Lide, D. R. CRC Handbook of Chemistry and Physics. CRC Press, New York, (2003).
    [73] Zhang, R. F. Wang, J. Beyerlein, I. J. Misra, A. & Germann, T. C. Atomic-scale study of nucleation of dislocations from fcc-bcc interfaces. ACTA Mater. 60, 2855–2865 (2012).
    [74] Andrieu, S. Piecuch, M. & Bobo, J. F. Fe growth on (0001) HCP RU and (111) FCC IR - consequences for structural and magnetic-properties. Phys. Rev. B 46, 4909–4916 (1992).
    [75] Tsay, J.S. & Liu, Y.C. Magnetic properties of ultrathin Si/Co/Ir(111) films. J. Phys. Condens. Matter 20, 445003 (2008).
    [76] G. Etrl and J. Küppers, Low Energy Electrons and Surface Chemistry. Weinheim, Germany: VCH, (1985).
    [81] von Bergmann, K. et al. Complex magnetism of the Fe monolayer on Ir(111). New J. Phys. 9, 396 (2007).
    [82] Louzazna, K. & Haroun, A. Magnetic and electronic properties of strained fcc Fe on Ir(001). Thin Solid Films. 374, 114–118 (2000).
    [83] Moruzzi, V. L. Marcus, P. M. Schwarz, K. & Mohn, P. Ferromagnetic phases of bcc and fcc Fe, Co, and Ni. Phys. Rev. B. 34, 1784–1791(1986).
    [84] Andrieu, S. Bobo, J.F. Hubsch, J. & Piecuch, M. Magnetic-properties of body-centered tetragona Fe Ir superlattices. J. Magn. Magn. Mater, 126, 349–351(1993).
    [85] Andrieu, S. Hubsch, J. Snoeck, E. Fischer, H. & Piecuch, M. Magnetism of BCT Fe in (100) Feir superlattices. J. Magn. Magn. Mater. 148, (1995).
    [86] Tsay, J.S. Tsai, D.C. Chang, C.H.T. & Chen,W.H. Thin Solid Films, 548, 475-479 (2013).
    [87] Nahas,Y. et al. Dominant Role of the Epitaxial Strain in the Magnetism of Core-Shell Co/Au Self-Organized Nanodots. Phys. Rev. Lett. 103, 067202 (2009).
    [88] Chan,W.Y. Tsai, D.C. Chen, W.H. Chang, C.H.T. & Tsay, J.S. Enhancement of the Polar Coercive Force for Annealed Co/Ir(111) Ultrathin Films. J. Korean Phys. Soc. 62, (2013).
    [89] Jiang, P.C. Chen, W.H. Hsieh, C.Y. & Tsay J.S. Layered structure and related magnetic properties for annealed Fe/Ir(111) ultrathin films. J. Appl. Phys. 117, 17B742 (2015).
    [90] Davis, L.E. MacDonald, N.C. Palmberg, P.W. & Riach, G. Handbook of Auger Electron Spectroscopy: A Reference Book of Standard Data for Identification and Interpretation of Auger Electron Spectroscopy Data, Physical Electronics, 2nd edition (1978).
    [91] Tanuma, S. Powell, C.J. & Penn, D.R. Calculation of electron inelastic mean free paths (IMFPs) VII. Reliability of the TPP-2M IMFP predictive equation. Surf. Interf. Analy. 35, 268-275 (2003).
    [92] Seah, M.P. Simple universal curve for the energy-dependent electron attenuation length for all materials. Surf. Interf. Analy. 44, 1353-1359 (2012).
    [95] Markov, I.V. Crystal Growth for Beginners: Fundamentals of Nucleation, Crystal Growth, and Epitaxy. Singapore: World Scientific. (1995).
    [96] Bradley M.A., R.S. The cohesive force between solid surfaces and the surface energy of solids. Lond.Edinb.Dubl.Phil.Mag. 13:86, 853 (1932).
    [97] Kraft, T. & Marcus, P. M. Elastic constants of Cu and the instability of its bcc structure. Phys. Rev. B 48, 5886-5890 (1993).
    [98] Alvarez, J. et al. Initial stages of the growth of Fe on Si(111)7x7. Phys. Rev. B 47, 16048-16050 (1993).
    [99] Kittel, C. Introduction to Solid State Physics (8th ed., Wiley & Sons, Singapore, 2004).
    [100] Vitos, L., Ruban, A.V., Skriver, H.L. & Kollár, J. The surface energy of metals. Sur. Sci. 411, 186-202 (1998).
    [101] Qiu, Z.Q. & Bader, S.D. Surface magneto-optic Kerr effect. Rev. Sci. Instrum. 71, 1243 (2000).
    [102] Chen, F. C., Wu, Y. E., Su, C. W. & Shern, C. S. Ag-induced spin-reorientation transition of Co ultrathin films on Pt(111). Phys. Rev. B. 66, 184417 (2002).
    [103] Cagnon, L. et al. Enhanced interface perpendicular magnetic anisotropy in electrodeposited Co/Au(111) layers. Phys. Rev. B 63, 104419 (2001).
    [104] Hashimoto, S., Ochiai, Y. & Aso, K. Perpendicular magnetic anisotropy and magnetostriction of sputtered Co/Pd and Co/Pt multilayered films. J. Appl. Phys. 66, 4909 (1989).
    [105] McGee, N.W. Johnson, M.T. de Vries, J.J. & aan de Stegge, J.J. Localized Kerr study of the magnetic properties of an ultrathin epitaxial Co wedge grown on Pt(111). J. Appl. Phys. 73, 3418 (1993).
    [106] Thieleff, J. Barretttf, N.T. Belkhout, R. Guillottf, C. & Koundif, H. An experimental study of the growth of CoPt(ll1) by core level photoemission spectroscopy, low-energy electron diffraction and Auger electron spectroscopy. Phys. Condens. Matter. 6, 5025-5038 (1994).
    [107] O’Handley, R.C. Modern Magnetic Materials: Principles and Applications. Wiley, New York. (2000).
    [108] Padovani, S., Chado, I., Scheurer, F. & Bucher, J.P. Transition from zero-dimensional superparamagnetism to two-dimensional ferromagnetism of Co clusters on Au(111). Phys. Rev. B 59, 11887-11891 (1999).
    [109] Chen, J.P., Sorensen, C.M. & Klabunde, K. J. Enhanced magnetization of nanoscale colloidal cobalt particles. Phys. Rev. B 51, 11527-11532 (1995).
    [110] McHenry, M.E., Majetich, S.A., Artman, J.O., DeGraef, M. & Staley, S.W. Superparamagnetism in carbon-coated Co particles produced by the Kratschmer carbon arc process. Phys. Rev. B 49, 11358-11363 (1994).
    [118] Tsay, J.S. & Shern, C.S. Rotated incommensurate domains of Co ultrathin films on Pt (111). Sur. Sci. 396, 319-326 (1998).
    [119] Griitter, P. & Durig, U. T. Growth of vapor-deposited cobalt films on Pt(111)studied by scanning tunneling microscopy. Phys. Rev. B 49, 2021-2029 (1994).
    [122] Hinkel, V., Sorba, L., Haak, H., Horn, K. & Braun, W. Evidence for Si diffusion through epitaxial NiSi2 grown on Si(111). Appl. Phys. Lett. 50, 1257 (1987).

    無法下載圖示 本全文未授權公開
    QR CODE