簡易檢索 / 詳目顯示

研究生: 藍伯倫
po-lun Lan
論文名稱: 東陞蘇鐵小灰蝶族群生物學: 族群之變動
The Population Biology of Chilades pandava peripatria( Lepidoptera: Lycaenidae): The Fluctuation of Population
指導教授: 徐堉峰
Hsu, Yu-Feng
學位類別: 碩士
Master
系所名稱: 生命科學系
Department of Life Science
畢業學年度: 87
語文別: 中文
論文頁數: 60
中文關鍵詞: 東陞蘇鐵小灰蝶台東蘇鐵同功異構酵素關聯族群平衡選汰物候學共同演化
英文關鍵詞: Chilades pandava peripatria, Cycas taitungensis, allozymes, metapopulation, balancing selection, phenology, coevolution
論文種類: 學術論文
相關次數: 點閱:148下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘 要
    東陞蘇鐵小灰蝶(Chilades pandava peripatria)為台灣特有亞種,幼蟲以台灣特有之台東蘇鐵(Cycas taitungenesis)及非台灣原生之蘇鐵(Cycas revoluta)的植物嫩葉為食。1997年11月至1999年4月期間選定樣區,觀測蘇鐵植物之新葉生長發育,同時估算東陞蘇鐵小灰蝶族群量以探究其相互影響。此外,自樣區採集幼蟲飼養成蝶,進行同功異構酵素澱粉膠水平電泳,分析其族群遺傳結構,檢驗出19個酵素26個基因座,僅Pgm-1為多型性。
    東陞蘇鐵小灰蝶的關聯族群結構以南部之台東紅葉及中部之彰化二地區為關聯族群中長期維繫之地區族群,二地區族群之基因頻率不同且為變異度頗高的族群核心(台東紅葉:p = 0.154;彰化:p = 0.416)。二地區族群之間的遺傳分化估算值FST = 0.176,顯示地區族群之間有隔離分化的現象,但彼此間仍有基因流傳。
    蘇鐵植物周年之新葉生長發育變動及東陞蘇鐵小灰蝶族群量變化構成環境優劣狀態,影響東陞蘇鐵小灰蝶地區族群基因頻率的差異及基因頻率的變動。由此推測,南及中部二地區族群間之隔離分化非全由遺傳漂變所造成的,其遺傳多型性未因瓶頸效應作用而消失,可能係平衡選汰的結果。
    從東陞蘇鐵小灰蝶族群動態及台東蘇鐵之蘇鐵植物周年之新葉生長發育表現來看,台東蘇鐵開芽期之間斷可抑制東陞蘇鐵小灰蝶族群之過度繁衍,東陞蘇鐵小灰蝶族群處於擴散之遷移模式,族群遺傳結構以Pgm-1S為優勢,;而台東蘇鐵開芽期間,東陞蘇鐵小灰蝶族群之Pgm-1F頻率則增加,族群則採以駐地模式為主。兩物種之間,呈現共同演化之交互迴饋現象。
    關鍵詞:東陞蘇鐵小灰蝶、台東蘇鐵、同功異構酵素、關聯族群、平衡選汰、物候學、共同演化。

    ABSTRACT
    Chilades pandava peripatria is native subspecies in Taiwan. Caterpillars feed on young leaves of Cycas taitungensis (native species) and Cycas revoluta (foreign species). During November 1997 to April 1999, we recorded the development of cycad leaf and the population size index of C. pandava peripatria once a month to study interaction between them. Sampling caterpillars from the experiment areas to feed in laboratory until emergence, then proceeded starch gel horizontal electrophoresis. We checked out 19 allozymes 26 loci, only Pgm-1 polymorphic.
    In the structure of C. pandava peripatria metapopulation, there are two long-persistent local areas were recognized as population centers therein: one is at Huang-yeh, Taitung, southern Taiwan; the other is at Chang-hua, central Taiwan. Evident heterozygosity in allozyme frequency was observed (Huang-yeh: p = 0.154; Chang-hua: p = 0.416). The estimated value of Wright’s F statistics FST was 0.176, indicating high degree of population differentiation.
    The differences and fluctuations of gene frequencies is correlated with environmental quality, which is composed of resource richness and local butterfly population sizes. Polymorphism in gene frequency of the butterfly population was not diminished due to frequent bottlenecking imposed by its host, such pattern is best explained by balancing selection rather than by genetic drift alone.
    From observations to population dynamics of C. pandava peripatria responding to the phenology of C. taitungensis, it was that C. pandava peripatria population dynamics was abviously regulated by intermittent budding of C. taitungensis. During the periods when the new bud was in short supply, C. pandava peripatria population was in dispersal mode, with individuals emigrated from source to sink and Pgm-1S gene was dominant,. Alternatively, Pgm-1F in C. pandava peripatria population increased when C. taitungensis began budding, C. pandava peripatria population was mainly in stay-at-home mode. This phenomenon evidently demonstrated reciprocal evolutionary interaction of coevolution between the butterfly and its host.
    Key words: Chilades pandava peripatria, Cycas taitungensis, allozymes, metapopulation, balancing selection, phenology, coevolution.

    目 次 中文摘要…………………………………………………………………….I 英文摘要……………………………………………………………………II 緒論………………………………………………………………………….1 材料與方法………………………………………………………………….6 結果………………………………………………………………………...12 討論………………………………………………………………………...18 參考文獻…………………………………………………………………...24 圖 次 圖一、台東紅葉村台東蘇鐵自然保留區位置圖………………………………..28 圖二、本研究於1997年9月至1999年4月間,在台灣地區所設之蘇鐵屬植物觀測站及東陞蘇鐵小灰蝶採樣站…………………………………….29 圖三、蘇鐵屬植物資源指數變動及東陞蘇鐵小灰蝶族群指數變動關係圖 (a) 台東紅葉村台東蘇鐵自然保留區1997年9月至1999年3月間台東蘇鐵資源變動及東陞蘇鐵小灰蝶族群指數變動關係圖…….…………...30 (b) 台東關山電光農場1997年11月至1999年3月間台東蘇鐵資源指數變動及東陞蘇鐵小灰蝶族群指數變動關係圖…………….…………...30 (c) 台北地區1997年11月至1999年4月間台東蘇鐵資源指數變動及東陞蘇鐵小灰蝶族群指數變動關係圖………………….…………….…..30 (d) 台北地區1997年11月至1999年4月間蘇鐵資源指數變動及東陞蘇鐵小灰蝶族群指數變動關係圖…………………………………………30 圖四、網室飼養之成蟲壽命及產卵量觀測(1)…………………………………..31 圖五、網室飼養之成蟲壽命及產卵量觀測(2)………………………………….32 圖六、網室飼養之成蟲壽命及產卵量觀測(3)………………………………….33 圖七、網室飼養之成蟲壽命及產卵量觀測(4)………………………………….34 圖八、以UPGMA分析各地區東陞蘇鐵小灰蝶族群間遺傳距離 (a) 以分化估算值FST 所繪製之叢聚樹狀圖……………………………...35 (b) 以遺傳距離Nei’s D值所繪製之叢聚樹狀圖………………………….35 圖九、Embden-Meyerhof 醣解途徑中phosphoglucomutase*(PGM)酵素之作用………………………………………………………………………….36 表 次 表一、台東紅葉村台東蘇鐵自然保留區台東蘇鐵及東陞蘇鐵小灰蝶各項數分析……………………………………………………………………….…37 表二、台北地區台東蘇鐵及東陞蘇鐵小灰蝶各項數值分析…………………..37 表三、台東關山電光農場台東蘇鐵及東陞蘇鐵小灰蝶各項數值分析………...38 表四、台北地區蘇鐵及東陞蘇鐵小灰蝶各項數值分析………………………..38 表五、宜蘭技術學院蘇鐵開芽及東陞蘇鐵小灰蝶各項數值分析……………..39 表六、同功異構酵素分析所用之地區族群樣品………………………………..40 表七、網室飼養之成蟲壽命及產卵量觀測(1)………………………………….41 表八、網室飼養之成蟲壽命及產卵量觀測(2)………………………………….42 表九、網室飼養之成蟲壽命及產卵量觀測(3)………………………………….43 表十、網室飼養之成蟲壽命及產卵量觀測(4)………………………………….44 表十一、東陞蘇鐵小灰蝶各地區族群各月份同功異構酵素Pgm-1F基因頻率、各基因型個體數、哈溫期望值、卡方值及Wright’s F值..…………45-46 表十二、東陞蘇鐵小灰蝶族群遺傳結構之Wright’s F統計值…………………47 表十三、各地區族群間FST值統計……………………………………………..47 表十四、各地區族群間Nei遺傳距離D值及遺傳相似度I值………………..47 表十五、環境優劣與東陞蘇鐵小灰蝶Pgm-1F對偶基因頻率變動統計……..47 附 錄 附錄一、本實驗所採用之緩衝液系統配方、電流強度及電泳時間…….…….48 附錄二、本實驗所使用之同功異構酵素國際生化組織正式名稱、編碼及染色配方………………………………………………………………...49-53

    參考文獻
    Acquaah, G. 1994. Practical Protein Electrophoresis for Genetic Research. Dioscorides Press, Portland, Oregon.
    Andrewartha, H. G. and L. C. Birch. 1954. The Distribution and Abundance of Animals. University of Chicago Press, Chicago.
    Ayala, F., J. R. Powell, M. L. Tracey, C. A. Mourao, and S. P`erez-Salas. 1972. Enzyme variability in the Drosophila willistoni group. IV. Genic variation in natural populations of Drosophila willistoni. Genetics 70:113-139.
    Clegg, M. T., and R. W. Allard. 1972. Patterns of genetics differentiation in the slender wild oat species, Avena barbata. Proc. Natl. Acad. Sci. USA 69:1820-1824.
    Crow, J. F. and C. Denniston (eds.) 1974. Genetic Distance. Plenum Press, New York.
    Denise, J., Deckert-cruz, R. H. Tyler, J. E. Landmesser, and M. R. Rose. Allozymic differentiation in response to laboratory demographic selection of Drosophila melanogaster. Evolution 51. 865-875.
    Dobzhansky, T. 1970. Genetics of the Evolutionary Process. Columbia University Press, New York.
    Dobzhansky, T. and F. J. Ayala. 1973. Temporal frequency changes of enzyme and chromosomal polymorphisms in natural populations of Drosophila. Proc. Natl. Acad. Sci. U.S. 70:680-683.
    Dowdeswell, W. H., T. A. Fisher and E. B. Ford. 1940. The quantitative study of populations in the Lepidoptera. I. Polyommatus icarus. Ann. Eugen. 10: 123-136.
    Edwards, A. W. F. 1971. Distance between population on the basis of gene frequencies. Biometrics 27: 873-881.
    Ehrlich, P. R. 1984. The structure and dynamics of butterfly populations. Pages 25-40 in R. I Vane-Wringt and P. R. Ackery editors. The Biology of Butterflies. Symposium of Royal Entomological Society, London, no. 11, Academic Press, London.
    Ehrlich, P. R., R. R. White, M. C. Singer, S. W. McKechnie and L. E. Gilbert. 1975. Checkerspot butterflies: a historical perspective. Science 188: 221-228.
    Fisher, R. A. 1930. Sexual reproduction and sexual selection. Pages 121-145 in The Genetical Theory of Natural Selection. Oxford University Press, Oxford.
    Ford, E. B. 1945. Butterflies. William Collins, London.
    Ford, H. D. and E. B. Ford. 1930. Fluctuations in numbers and its influence on variation in Melitaea aurinia. Trans. Ent. Soc. Lon. 78: 345-351.
    Gilbert, L. E. and M. C. Singer. 1973. Dispersal and gene flow in a butterfly species. Am. Nat. 107: 58-72.
    Goulson, D. Allozyme variation in the butterfly, Maniola jurtina ( Lepidoptera: Satyrinae)(L.): evidence for selection. Heredity 71:386-393.
    Gu, H. 1991. Electrophoretic variation at flight related enzyme loci and its possible association with flight capacity in Epiphyas postvittana. Biochem. Genet. 29: 345-354.
    Harrison, S., D. D. Murphy, and P. R. Ehrlich. 1988. Distribution of the butterfly, Euphydryas editha bayensis: edidence for a metapopulation model. Am. Nat. 132: 360-382.
    Hedrick, P. W. 1975. Genetic similarity and distance: Comments and comparisons. Evolution 29: 362-366.
    Hsu, Y. F. 1989. Systematic position and description of Chilades peripatria sp. nov. ( Lepidoptera : Lycaenidae ). Bull. Inst. Zool. ,Academia Sinica 28:55- 62.
    Johnson, G. B. 1972. Evidence that enzyme polymorphisms are not selectively neutral. Nat. New Biol. 237:170-171.
    ---------. 1974. Enzyme polymorphism and metabolism. Science 184:28-37.
    Kephart, S. R. 1990. Starch gel electrophoresis of plant isozymes: a comparative analysis of technique. Amer. J. Bot. 77: 693-712.
    Kimura, M. 1968. Evolutionary rate at the molecular level. Nature(Lond.) 217:624-662.
    Kimura, M., and J. Crow. 1964. The number of alleles that can be maintained in a finite population. Genetics 49:725-738.
    Kimua, M. 1968. Evolutionary rate at the molecular level. Nature (Lond.) 217:624-662.
    Kimura, M., and T. Ohta. 1971. Theoretical Aspects of Population Genetics. Princeton University Press, Princeton, N.J.
    ---------. 1974. On some principles governing molecular evolution. Proc. Natl. Acad. Sci. USA 71:2848-2852.
    Lewontin, R. C. 1974. The Genetic Basis of Evolutionary Change. Columbia University Press, New York.
    Luckinbill, L. S., T. A. Grudzien, S. Rhine, and G. Weisman. 1989. The genetic basis of adaptation to selection for longevity in Drosophila melanogaster. Evolutionary Ecology 3: 31-39.
    MacAthur, R. B. 1972. Geographical Ecology: Patterns in the Distribution of Species. New York: Harper and Row. (Reprint edition: Princeton University Press, Princeton, N. J., 1984)
    Marinkovi`c, D. and F. J. Ayala. 1975. Fitness of variants in Drosophila pseudoobscura. I. Selection at the PGM-1 and ME-2 loci. Genetics 79: 85-95.
    Murrphy, R. W., J.W. Sites, Jr., D. G. Buth, and C. H. Haufler. 1996. Proteins: Isozyme electrophoresis. Pages 51-120 in D. M. Hillis, C. Moritz, B. K. Mable editors. Molecular Systematics 2ed. Sinauer Associates.
    Nei, M. 1977. F-statistics and analysis of gene diversity in subdivided populations. Ann.Hum. Genet. 41: 225-233.
    ---------. 1987. Molecular Evolutionary Genetics. Columbia University Press, New York.
    New, T. R. 1991. Butterfly Conservation. Oxford University Press, Melboune.
    Powell, J. R. 1971. Genetic polymorphisms in varied environments. Science 174:1035-1036.
    Powell, J. R. and C. E. Taylor. 1979. Genetic variation in ecologically diverse environments. Am. Sci. 67:590-596.
    Prakash, S., R. C. Lewontin, and J. L. Hubby. 1969. A molecular approach to the study of genic heterozygosity in natural population. IV. Patterns of genic variation in central, marginal, and isolated populations of Drosophila pseudoobscura. Genetics 61:841-858.
    Shaklee, J. B. and C. P. Keenan. 1986. A practical laboratory guide to the techniques and methodology of electrophoresis and its application to fish fillet identification, Aust. CSIRO. Mar. Lab. Rep. 177: 1-59.
    Shaw, C. R. 1970. How many genes evolve? Biochem. Genet. 4:275-283.
    Shen, C. F. , K. D. Hill, C. H. Tsou, and C. J. Chen. 1994. Cycas taitungensis sp. nov. ( Cycadaceae ) , a new name for the widely known cycad species endemic in Taiwan. Bot. Bull. Acad. Sin. 35:133-140.
    Shirozu, T. and K. Ueda. 1992. Lycaenidae. in J. B. Hepper and H. Inoue. editors. Lepidoptera of Taiwan. Association of Tropical Lepidoptera. Gainesville.
    Smith, C. A. B. 1977. A note on genetic distance. Ann. Hum. Genet. 40: 463-479.
    Thomas, P. S. and F.J Ayala. 1979. Frequency-dependent selection at the PGM-1 locus of Drosophila pseudoobscura. Genetics 92: 995-1003.
    Thomas, J. A. 1984. The conservation of butterflies in temperate countries: past efforts and lessons for future. Pages 327-332 in R. I Vane-Wringt and P. R. Ackery editors. The Biology of Butterflies. Symposium of Royal Entomological Society, London, no. 11, Academic Press, London.
    Thomas, C. D. and I. Hanski. 1997. Butterfly metapopulations. Pages 359-386 in I. Hanski and M. Gilpin, editors. Metapopulation Biology: Ecology, Genetics and Evolution. Academic Press, London, UK.
    Wahlund, S. 1928. Composition of populations from the perspective of the theory of heredity. Hereditas 11:65-105( in German ).
    Wallace, D. G., L. R. Maxon, and A. C. Wilson. 1971. Albumin evolution in frogs: a test of the evolutionary clock hypothesis. Proc. Natl. Acad. Sci. USA 68:3127-3129.
    Watt, W. B. 1977. Adaptation at specific loci. I. Natural selection on phosphoglucose isomerase of Colias butterflies: Biochemical and population aspects. Genetics 87: 177-184.
    ---------. 1983. Adaptation at specific loci. II Demographic and biochemical elements in the maintenance of the Colias PGI polymorphism. Genetics 103: 691-724.
    Watt, W. B., R. C. Cassin, and M. B. Swan. 1983. Adaptation at specific loci. III. Field behavior and survivorship differences among Colias PGI genotypes are predictable from in vitro biochemistry. Genetics 103: 725-739.
    Watt, W. B., P. A. Carter, and S. M. Blower. 1985. Adaptation at specific loci. IV. Differential mating success among glycolytic allozyme genotypes of Colias butterflies. Genetics 109: 157-175.
    Wright, S. 1931. Evolution in Mendelian population. Genetics 16:97-159.
    ---------. 1943. Isolation by distance. Genetics 28: 114-138.
    ---------. 1951. The genetical structure of population. Ann. Eugen. 15: 323-354.
    ---------. 1978. Evolution and the Genetics of Population. Vol. 4. Variability within and among Natural Populations. University of Chicago Press, Chicago.
    Yamazaki, T., and T. Maruyama. 1973. Evidence that enzyme polymorphisms are selectively neutral. Nat. New Biol. 245:140-141.
    未具名. 1976. 台灣花木之重要害蟲. 國立台灣大學昆蟲研究室編印.
    陳仁昭、陳文華. 1983. 蘇鐵小灰蝶的生態及其食物競爭現象. 中華昆蟲學會七十一年年會論文摘要:4.
    張玉珍. 1982. 台灣經濟樹種常見之害蟲. 台灣省林業試驗所編印.
    張玉珍. 1989. 黑被蘇鐵小灰蝶(Chilades pandava pandava Horsfield)之形態、生活史、危害暨蟲生真菌對其幼蟲之致病力. 林業試驗所研究報告季刊 4(1):43-50.

    無法下載圖示
    QR CODE