簡易檢索 / 詳目顯示

研究生: 阮氏梅
Nguyen, Thi Mai
論文名稱: 臺灣東部和平地區開口充填方解石的液體來源之研究
Study of Fluid Source of Open-Filling Calcites in the Hoping Area, Eastern Taiwan
指導教授: 葉恩肇
Yeh, En-Chao
學位類別: 碩士
Master
系所名稱: 地球科學系
Department of Earth Sciences
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 91
中文關鍵詞: oxygen and carbon isotopeeastern Taiwanfluid inclusionclumped isotopemeteoric water
英文關鍵詞: oxygen and carbon isotope, eastern Taiwan, fluid inclusion, clumped isotope, meteoric water
DOI URL: http://doi.org/10.6345/THE.NTNU.DES.001.2018.B07
論文種類: 學術論文
相關次數: 點閱:160下載:19
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

The aim of this study is to evaluate whether the meteoric water can penetrate into the deep crust of Hoping area, eastern Taiwan. To test the hypothesis, this work investigated the fluid source of open-filling carbonates deposited on the fracture surfaces with various attitudes via Raman spectroscopy, stable isotope analysis, fluid inclusion and clumped isotope analysis. In details, Raman spectroscopy can identify the type of open-filling carbonates, analysis of oxygen and carbon stable isotopes of carbonate deposits can help to delineate the possible fluid sources. Fluid inclusion analysis can provide temperature information of open-filling carbonates. The clumped isotope of carbonates will further attain the absolute temperature for estimating the oxygen isotope of fluids.
With Raman spectroscopy, calcite is identified in type A, B and Others deposits although their occurrences are quite different. Type A and Others is thick film and crystal types and is deposited on oblique-foliation fractures. Type B is thin membrane type and is deposited on parallel -foliation fractures. No dolomite is found in the carbonate deposit. Also quartz is identified in specific intervals. The carbon and oxygen isotopes of Type A, type B and type Others in meta-granite cores did not hold relationship with depth. Type A has smaller 18O with bigger 13C, while type B has similar carbon isotope with varied oxygen isotope. The oxygen isotope of marble lenses have constant values with scattered carbon isotope. The carbon and oxygen isotope pattern of marble lenses has a trend different from that of open- filling calcites. The 18O values of marble lenses from meta-granite cores are consistent with those of marble lenses from marble outcrops.
Fluid inclusion analysis of calcite crystals was applied to measure the homogenization temperature (Th) of location A42_2, sample O06 and location O19_2. Their Th ranges 164 - 231 ℃, 106 - 305 ℃ and 160 - 211 ℃, respectively. Calcite was formed at 3 – 6 km below the surface with the geothermal gradient of 30–60°C/km. Assuming that the oxygen of open-filling calcites are equilibrium with that of fluid at Th, the calculated 𝛿18O fluid of location A42_2 and A42_3 ranges from -13.33 to -9.52‰VSMOW and -13.08 to -8.89‰VSMOW, respectively, indicative of meteoric water from 500 to 3000m elevation. The average δ18O fluid of sample O06 is -6.26 ± 2.62‰VSMOW indicate formation from meteoric water at elevation less than 4000m. These results show that meteoric waters dominate the fluid phase in open-filling calcites. However, the calculated 𝛿18O fluid of location O19_1 were mixed meteoric water with either magmatic sources or metamorphic water.
The clumped-isotope temperature of sample A42 and O19 is 209℃ and 92℃, respectively. The calculated oxygen isotope fluid of sample A42 and O19 is similar with local meteoric water at 300m elevation.

Acknowledgements i Abstract ii Table of Contents iv List of Tables vi List of Figures vii Chapter 1. Introduction 1 1.1 Motivation 1 1.2 Tectonic Setting and Geological Background 3 1.3 Sample descriptions 8 Chapter 2. Methods 13 2.1 Raman spectroscopy 13 2.2 Oxygen and carbon isotope analysis 15 2.3 Fluid inclusion analysis 17 2.4 Clumped-isotope analysis 21 Chapter 3. Results 26 3.1 Raman spectroscopy 26 3.2 Compositions of carbon & oxygen isotope analysis 29 3.3 Fluid inclusion analysis 34 3.4 Clumped isotope analysis 39 Chapter 4. Discussion 42 4.1.δ18O and δ13C compositions of open-filling calcite 42 4.2 The compositions of marble 46 4.3 Calculated δ18O fluid 54 4.4 Meteoric water 59 4.5 Fluid sources 64 Chapter 5. Conclusion 68 References 70 Appendix A The distribution of open-filling fracture and marble lenses in core 74 Appendix B. The coordination of marbles and distance of marbles and meta-granites in outcrops 76 Appendix C The carbon and oxygen isotope of core samples with depth 77 Appendix D. Carbon and oxygen isotope composition of marbles and marble lenses in outcrop 84 Appendix E. The homogenization temperature of open-filling calcites 85 Appendix F. The calculated oxygen isotope compositions of open-filling calcites 86 Appendix G. Expected temperature based on δ18O and δ18O fluid of marble lenses 88 Summary of questions/answers and suggestions 90

Bischoff, W. D., Sharma, S. K., and MacKenzie, F. T. (1985). Carbonate ion disorder in synthetic and biogenic magnesian calcites: a Raman spectral study. American Mineralogist, 70(5-6), 581-58.
Bishop, J. L., Lane, M. D., Dyar, M. D., and Brown, A. J. (2008). Reflectance and emission spectroscopy study of four groups of phyllosilicates: smectites, kaolinite-serpentines, chlorites and micas. Clay minerals, 43(1), 35-54.
Chou, J. T. (1973). Sedimentology and paleogeography of the upper Cenozoic system of western Taiwan. In Proc. Geol. Soc. China (Vol. 16, pp. 111-143).
Chou, J. T. (1980). Stratigraphy and sedimentology of the Miocene in western Taiwan. Petroleum Geology of Taiwan, 17, 33-52.
Chu, J. B., and Shieh, Y. N. (1981). Oxygen and carbon isotopes and mineral chemistry of metamorphic rocks from the Nanao district, eastern Taiwan. Memoir of the Geological Society of China, 4, 583-630.
Eiler, J. M. (2007). “Clumped-isotope” geochemistry—The study of naturally-occurring, multiply-substituted isotopologues. Earth and Planetary Science Letters, 262(3), 309-327.
Ferrer Espinilla, P., Ruiz Moreno, S., Ramos de Torres, A., & López-Gil Serra, A. (2013). Molecular stratigraphic analysis with Raman spectroscopy of the shell of a mussel. In MARTECH 2013: 5th International Workshop on Marine Technology: 19th-20th of November, Vilanova i la Geltrú, 82-84.
Jahn, B. M., and Liou, J. G. (1977). Age and geochemical constraints of glaucophane schists of Taiwan. Mem. Geol. Soc. China, 2, 129-140.
Jahn, B. M., Martineau, F., Peucat, J. J., and Cornichet, J. (1986). Geochronology of the Tananao schist complex, Taiwan, and its regional tectonic significance. Tectonophysics, 125(1-3), 103-124.
Juan, V. C. (1975). Tectonic evolution of Taiwan. Tectonophysics, 26(3), 197-212.
Ghosh, P., Adkins, J., Affek, H., Balta, B., Guo, W., Schauble, E. A., and Eiler, J. M. (2006). 13 C–18 O bonds in carbonate minerals: A new kind of paleothermometer. Geochimica et Cosmochimica Acta, 70(6), 1439-1456.
Ho, C. (1988). An introduction to the geology of Taiwan. Ministry of Economic Affairs Taiwan, Central Geological Survey.
Huang T.H, (2017). Fluid temperature and composition associated with displacement of the Chelungpu fault in Taiwan. National Taiwan University. Master Thesis, 1-47.
Huntington, K. W., Eiler, J. M., Affek, H. P., Guo, W., Bonifacie, M., Yeung, L. Y, and Came, R. (2009). Methods and limitations of ‘clumped’CO2 isotope (Δ47) analysis by gas‐source isotope ratio mass spectrometry. Journal of Mass Spectrometry, 44(9), 1318-1329.
Keith, M. L., and Weber, J. N. (1964). Carbon and oxygen isotopic composition of selected limestones and fossils. Geochimica et Cosmochimica Acta, 28(10-11), 1787-1816.
Kim, S. T., and O'Neil, J. R. (1997). Equilibrium and nonequilibrium oxygen isotope effects in synthetic carbonates. Geochimica et Cosmochimica Acta, 61(16), 3461-3475.
Kluge, T., John, C. M., Jourdan, A. L., Davis, S., and Crawshaw, J. (2015). Laboratory calibration of the calcium carbonate clumped isotope thermometer in the 25–250 C temperature range. Geochimica et Cosmochimica Acta, 157, 213-227.
Lan, C.Y, L., Lee, T., and Lee, C. W. (1990). The Rb-Sr isotopic record in Taiwan gneisses and its tectonic implication. Tectonophysics, 183(1-4), 129-143.
Lan, C. Y., Jahn, B. M., Mertzman, S. A., and Wu, T. W. (1996). Subduction-related granitic rocks of Taiwan. Journal of Southeast Asian Earth Sciences, 14(1-2), 11-28.
Laskar, A. H., Yui, T. F., and Liang, M. C. (2016). Clumped isotope composition of marbles from the Backbone Range of Taiwan. Terra Nova, 28(4), 265-270.
Lee, C. W., and Teng, M. H. (1986). Oxygen and carbon stable isotopes in calcite marbles and calcite-dolomite marbles in the Hoping-tailuko area, eastern Taiwan. In Proceedings-Geological Society of China, 29, 35-45.
Lin, C. H. (2000). Thermal modeling of continental subduction and exhumation constrained by heat flow and seismicity in Taiwan. Tectonophysics, 324(3), 189-201.
Lee, H., Yang, T. F., Lan, T. F., Song, S., and Tsao, S. (2005). Fumarolic gas composition of the Tatun Volcano Group, northern Taiwan. Terrestrial Atmospheric and Oceanic Sciences, 16(4), 843.
Lin, C.Y. (2015). Study of Brittle-Ductile Structures and Brittle Structures in Downstream Area of Hoping River, Hualien. National Taiwan Normal University. Master Thesis, 1-102
Liu, K.K., Yui, T.F., Shieh, Y.N., Chiang, S.C., L.H., and C., Ho, J.Y. (1990). Hydrogen and oxygen isotope compositions of meteoric and thermal waters from the Chingshui geothermal area, northeastern Taiwan. Proc. Geol. Soc. China 33, 143-165.
Lloyd, M. K., Eiler, J. M., and Nabelek, P. I. (2017). Clumped isotope thermometry of calcite and dolomite in a contact metamorphic environment. Geochimica et Cosmochimica Acta, 197, 323-344.
Lo, C. H., & Yui, T. F. (1996). 40Ar/39Ar dating of high-pressure rocks in the Tananao basement complex, Taiwan.
Lu, Y. C., Song, S. R., Wang, P. L., Wu, C. C., Mii, H. S., MacDonald, J., and John, C. M. (2017). Magmatic-like fluid source of the Chingshui geothermal field, NE Taiwan evidenced by carbonate clumped-isotope paleothermometry. Journal of Asian Earth Sciences.
Luetkemeyer, P. B., Kirschner, D. L., Huntington, K. W., Chester, J. S., Chester, F. M., and Evans, J. P. (2016). Constraints on paleofluid sources using the clumped-isotope thermometry of carbonate veins from the SAFOD (San Andreas Fault Observatory at Depth) borehole. Tectonophysics, 690, 174-189.
Menzies, C. D., Teagle, D. A., Craw, D., Cox, S. C., Boyce, A. J., Barrie, C. D., and Roberts, S. (2014). Incursion of meteoric waters into the ductile regime in an active orogen. Earth and Planetary Science Letters, 399, 1-13.
Muroyama, K., Suwa, S., Kawabata, A., Takami, Y., and Hayashi, J. I. (2011). Effects of Addition of Hydrogen Peroxide and/or Calcium Carbonate on Ozone-Decomposition of Phenol Sparingly Dissolved in Water. Ozone: Science & Engineering, 33(2), 143-149.
Nasdala, L., Wildner, M., Wirth, R., Groschopf, N., Pal, D. C., and Möller, A. (2006). Alpha particle haloes in chlorite and cordierite. Mineralogy and Petrology, 86(1), 1-27.
Nomura, S. F., Sawakuchi, A. O., Bello, R. M. S., Méndez-Duque, J., Fuzikawa, K., Giannini, P. C. F., and Dantas, M. S. S. (2014). Paleotemperatures and paleofluids recorded in fluid inclusions from calcite veins from the northern flank of the Ponta Grossa dyke swarm: Implications for hydrocarbon generation and migration in the Paraná Basin. Marine and Petroleum Geology, 52, 107-124.
O'Neil, J. R., Clayton, R. N., and Mayeda, T. K. (1969). Oxygen isotope fractionation in divalent metal carbonates. The Journal of Chemical Physics, 51(12), 5547-5558.
Tsai, Y.B. (1986). Seismotectonics of Taiwan. Tectonophysics, 125(1-3), 1731-2837.
Roedder, E. (1984). Volume 12: Fluid inclusions. Mineralogical.
Sano, Y., and Marty, B. (1995). Origin of carbon in fumarolic gas from island arcs. Chemical Geology, 119(1), 265-274.
Schaller, J. (2014). Bioturbation/bioirrigation by Chironomus plumosus as main factor controlling elemental remobilization from aquatic sediments?. Chemosphere, 107, 336-343.
Schleicher, A. M., Tourscher, S. N., van der Pluijm, B. A., and Warr, L. N. (2009). Constraints on mineralization, fluid‐rock interaction, and mass transfer during faulting at 2–3 km depth from the SAFOD drill hole. Journal of Geophysical Research: Solid Earth, 114(B4).
Sheppard, S. M. (1986). Characterization and isotopic variations in natural waters. Reviews in Mineralogy and Geochemistry, 16(1), 165-183.
Shieh, Y. N., Cherng, F. P., and Hoering, T. C. (1983). Oxygen and hydrogen isotope studies of meteoric and thermal waters in Taiwan. Mem. Geol. Soc. China, 5, 127-140.
Steele-MacInnis, M., Han, L., Lowell, R. P., Rimstidt, J. D., and Bodnar, R. J. (2012). The role of fluid phase immiscibility in quartz dissolution and precipitation in sub-seafloor hydrothermal systems. Earth and Planetary Science Letters, 321, 139-151.
Sun, J., Wu, Z., Cheng, H., Zhang, Z., and Frost, R. L. (2014). A Raman spectroscopic comparison of calcite and dolomite. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 117, 158-162.
Swanson, E. M., Wernicke, B. P., Eiler, J. M., and Losh, S. (2012). Temperatures and fluids on faults based on carbonate clumped–isotope thermometry. American Journal of Science, 312(1), 1-21.
Uemura, R., Nakamoto, M., Asami, R., Mishima, S., Gibo, M., Masaka, K., and Shen, C. C. (2016). Precise oxygen and hydrogen isotope determination in nanoliter quantities of speleothem inclusion water by cavity ring-down spectroscopic techniques. Geochimica et Cosmochimica Acta, 172, 159-176.
Vaselli, L., Cortecci, G., Tonarini, S., Ottria, G., and Mussi, M. (2012). Conditions for veining and origin of mineralizing fluids in the Alpi Apuane (NW Tuscany, Italy): Evidence from structural and geochemical analyses on calcite veins hosted in Carrara marbles. Journal of Structural Geology, 44, 76-92.
Yui, T. F. (1987). Carbon isotope composition of marble: a possible criterion for geochronologic/stratigraphic correlation in the Tananao Group, Taiwan. Mem. Geol. Soc. China, 8, 123-133.
Yu, S. B., Chen, H. Y., and Kuo, L. C. (1997). Velocity field of GPS stations in the Taiwan area. Tectonophysics, 274(1), 41-59.
Wang, P. L., Wu, J. J., Yeh, E. C., Song, S. R., Chen, Y. G., and Lin, L. H. (2010). Isotopic constraints of vein carbonates on fluid sources and processes associated with the ongoing brittle deformation within the accretionary wedge of Taiwan. Terra Nova, 22(4), 251-256.

下載圖示
QR CODE