簡易檢索 / 詳目顯示

研究生: 鐘宏見
Hong-Jain Zhon
論文名稱: DNA演化模糊系統應用於移動機器人控制
DNA-Based Evolution Fuzzy System and Its Applications in Mobile Robot Control
指導教授: 呂藝光
Leu, Yih-Guang
洪欽銘
Hong, Chin-Ming
學位類別: 碩士
Master
系所名稱: 電機工程學系
Department of Electrical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 61
中文關鍵詞: 模糊邏輯系統Q-LearningDNA遺傳演算法
英文關鍵詞: Fuzzy logic system, Q-learning, DNA, Genetic algorithm(GA)
論文種類: 學術論文
相關次數: 點閱:169下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 遺傳演算法是以隨機多點同時搜尋的方式,而非傳統單點依序搜尋方式,因此可以避免侷限在某一區域的最佳解上,而得到整體區域的最佳解。然而,傳統遺傳演算法在演化模糊邏輯系統內部的架構與參數當中,其性能及族群大小有著密切關係等限制。為了改善此限制,於是以DNA-Based演化演算法來取代傳統的遺傳演算法,在實現上與傳統遺傳演算法一樣需要精確的模擬器與大量演化時間。
    本論文提出以整合DNA-Based演化模糊邏輯系統及Q-Learning之適應性學習方法,以使移動機器人能適應實際複雜的環境。藉由Q-Learning來輔助DNA-Based演化模糊邏輯系統的方式,利用Q-Learning在實際環境互動當中產生最佳行為,且不需要建構環境動態模型,以避免因精確模擬器不易建立而造成模擬器和實際環境的誤差。由模擬結果證實,Q-Learning提供DNA-Based演化的過程當中適應函數所產生的方式,在不需要任何環境的座標資訊,有效提昇與實際環際互動當中的精確度。
    最後,將本論文在模擬器上所演化完成的參數應用於sputnik移動機器人,以驗證實際環境互動的可行性與效能。

    Genetic algorithm(GA) is a way which many random points are being searched at the same time, and which is not a traditional single point being searched in sequence. Therefore the GA can avoid limiting the optimal solution of someone area. However, the performance of the traditional GAs is closely related with the population size for the evolvement of the parameter values of the fuzzy logic system . In order to improve this limit of the GA, a DNA-Based evolution algorithm can replace the traditional GAs, regardless of the DNA-Based evolution algorithm or the traditional GAs, the implementation requires a precise simulator and a significant amount of time.
    This thesis presents an adaptive learning approach of integrating DNA-Based evolution fuzzy logic system and Q-learning to enable a mobile robot to adapt a real and complex environment. Q-learning is used to assist the method of the DNA-Based which evolves the fuzzy logic system. Taking advantage of the optimal behavior of Q-learning in real environment and do not need to establish the environmental dynamic model. Thus, the optimal behavior of Q-learning in real environment can avoid the error between the simulator and real environment because the precise simulator is difficult to design. According to the simulation results, Q-learning do not need any environmental coordinate information and effectively promote the accuracy in real environment.
    Finally, one experiment for sputnik mobile robot using complete parameter in simulator has performed to demonstrate the feasibility and the performance in real environment.

    中文摘要i 英文摘要ii 誌 謝 iii 目 錄 iv 圖 目 錄 vi 表 目 錄 viii 第一章 緒論 1 1.1 研究背景與動機 1 1.2 研究目的 2 1.3 研究方法 3 第二章 遺傳演算法與DNA遺傳演算法 4 2.1 傳統遺傳演算法之理論背景與基礎 4 2.2 傳統遺傳演算法 5 2.2.1 傳統遺傳演算法之架構 5 2.2.2 傳統遺傳演算法之演化程序 6 2.3 DNA遺傳演算法 8 2.3.1 DNA遺傳演算法之理論背景 9 2.3.2 DNA遺傳演算法之演化操作 9 第三章 非監督式學習法12 3.1 增強式學習法 12 3.2 Q-learning學習法 14 第四章 模糊邏輯系統 16 4.1 模糊系統之理論背景 16 4.2 模糊邏輯系統 17 4.2.1 模糊邏輯系統之基本架構 17 4.2.2 模糊邏輯系統之模糊化及解模糊化 18 4.2.3 模糊邏輯系統之規則庫 21 4.2.4 模糊邏輯系統之推論引擎 23 第五章 整合DNA演化法及Q-Learning之適應性學習方法 24 5.1 整合學習方法之架構24 5.2 整合DNA演化法與Q-Learning之適應性學習方法的設計 25 第六章 移動機器人之模擬與實驗 32 6.1 移動機器人之軟硬體架構 32 6.1.1 移動機器人軟體說明 32 6.1.2 移動機器人硬體說明 34 6.2 移動機器人之軟體模擬 45 6.3 移動機器人之適應性學習實驗 52 第七章 研究結論與建議 58 參考文獻 59

    [1] L. A. Zadeh, “Fuzzy sets”, IEEE Trans. Information and Control 8, pp. 338-353,
    1965
    [2] L.X. Wang and J.M. Mendel, “Fuzzy Basis Functions, Universal Approximation, and Orthogonal Least Squares Learning,” IEEE Trans. Neural Networks., vol. 3,
    no. 5, pp. 807-814, 1992.
    [3] C.H. Wang, W.Y. Wang, T.T. Lee, and P.S. Tseng, “Fuzzy B-spline Membership Function (BMF) and Its Applications in Fuzzy-Neural Control,” IEEE Trans. Syst.
    Man, Cyber., vol. 25, no. 5, pp.841-851, 1995.
    [4] L.X. Wang, Adaptive fuzzy systems and control: design and stability analysis, Englewood Cliffs,NJ: Prentice-Hall, 1994.
    [5] Y. D. Kwon, J. M. Won and J. S. Lee, “Control of Mobile Robot by using
    Evolutionary Fuzzy Controller”, IEEE International Conference on Evolutionary
    Computation., South Korea, 1998, pp. 422-427.
    [6] P. Phokharatkual and S. Phaiboon, “Mobile Robot Control Using Type-2 Fuzzy Logic System”, IEEE Conference on Robotics, Automation and
    Mechatronics., Singapore, Dec. 2004, pp. 296-299.
    [7] H. A. Hagras, “A Hierarchical Type-2 Fuzzy Logic ControlArchitecture for Autonomous Mobile Robots”, IEEE Trans. Fuzzy Systems., vol.
    12, no. 4, pp. 524-539, Aug, 2004.
    [8] C. F. Juang, “A TSK-Type Recurrent Fuzzy Network for Dynamic Systems Processing by Neural Network and Genetic Algorithms”, IEEE Trans. Fuzzy
    Systems., vol. 10, no. 2, pp.155-170, 2002.
    [9] W.A. Farag, V.H. Quintana, and G. Lamberttorres, “A Genetic-Based Neuro-Fuzzy Approach for Modeling and Control of Dynamical Systems,” IEEE Trans.
    Neural Networks., vol. 9, no. 5, pp. 756-767, Sept. 1998.
    [10] C. H. Wang, H.L. Liu, and C.T. Lin, “Dynamic Optimal Learning Rates of a Certain Class of Fuzzy Neural Networks and its Applications with Genetic
    Algorithm,” IEEE Trans. Syst. Man, Cyber. Part B., vol. 31, no. 3, pp.467 –475,
    June 2001.
    [11] Y. Yuan, and H. Zhuang, “A Genetic Algorithm for Generating Fuzzy Classification Rules,” IEEE Trans. Fuzzy Sets and Systems., vol. 84, no. 1, pp.
    1-19, November, 1996.
    [12] T.L. Seng, M.B. Khalid, and R. Yusof, "Tuning of a Neuro-Fuzzy Controller by Genetic Algorithm," IEEE Trans. Syst. Man, Cyber. Part B., vol. 29, no. 2,
    pp.226-236, 1999.
    [13] Y. G. Leu, “DNA-Based Evolution Fuzzy-Neural Networks,” 2005 The 13th
    National Conference on Fuzzy Theory and Its Applications.
    [14] T. Yoshikawa, T. Furuhashi, and Y. Uchikawa, “DNA Coding Method and a Mechanism of Development for Acquisition of Fuzzy Control Rules,” IEEE International Conference on Fuzzy Systems., Japan, 1996 , pp.2194-2200.
    [15] T. Yoshikawa, T. Furuhashi, and Y. Uchikawa, “Emergence of Effective Fuzzy Rules for Controlling Mobile Robots using DNA Coding Method,” IEEE International Conference on Evolutionary Computation., Japan, 1996, pp. 581-586,.
    [16] T. Yoshikawa, T. Furuhashi, and Y. Uchikawa, “The Effects of Combination of DNA Coding Method with Pseudo-Bacterial GA,” Proceedings of IEEE International Conference on Evolutionary Computation., Japan, 1997, pp. 285-290,.
    [17] Y.S Ding and L.H. Ren, “A new DNA-Based Evolutionary Algorithm with Application to the Design of Fuzzy Controllers,” Proceedings of the 2002 Congress on Evolutionary Computation., Shanghai, 2002, pp.1982-1987.
    [18] L.H. Ren and Y.S Ding, “Design of Fuzzy Control System by a new DNA-Based Immune Genetic Algorithm,” IEEE International Conference on Fuzzy Systems., Shanghai, 2001, pp. 244-247.
    [19] Y.S Ding and L.H. Ren, “DNA Genetic Algorithm for Design of the Generalized Membership-Type Takagi-Sugeno Fuzzy Control System,” IEEE International Conference on Systems, Man, and Cybernetics., Shanghai, 2000, pp.3862-3867.
    [20] C. Wagner and H. Hagras, “A Genetic Algorithm Based Architecture for Evolving Type-2 Fuzzy Logic Controllers for Real World Autonomous Mobile Robots,” IEEE International Conference on Fuzzy Systems., London, 2007, pp. 1-6.
    [21] B. Andersson, P. Svesson, M. Nordahl, and P. Nordin, “On-Line Evolution of Control for a Four-Legged Robot using Genetic Programming,” in Real-World Applications of Evolutionary Computing. ser. Lecture Notes inComputer Science., S. Cagnoni et al., Eds. Berlin, Germany: Springer-Verlag, 2000, pp. 319–326.
    [22] D. V. Djonin and V. Krishnamurthy, “Q-Learning Algorithms for Constrained Markov Decision Processes With Randomized Monotone Policies: Application to MIMO Transmission Control,” IEEE Trans. Signal Processing., vol. 55, no. 5, pp. 2170-2181, May. 2007.
    [23] G.S. Yang, E. K. Chen, and C.W. An, “Mobile Robot Navigation using Neural Q-Learning,” International Conference on Machine Learning and Cybernetics., Shanghai, 2004, pp. 48-52.
    [24] D.E. Goldberg , Genetic Algorithm in Search Optimization and Machine
    Learning. Reading , MA: Addison-Wesley, 1989.
    [25] A. Homaifar and E. McCormick, “Simultaneous Design of Membership Functions and Rule Sets for Fuzzy Controllers using Genetic Algorithms,” IEEE
    Trans. Fuzzy Syst., vol. 3, no. 2, pp. 129-139, Apr. 1995.
    [26] C. J. Watkins and P. Dayan, “Q-Learning”. Machine Learning, vol 8, no.3, pp.
    279-292, March 1992.
    [27] M.N. Ahmadabadi and M. Asadpur, “Expertness Based Cooperative Q-Learning,”
    IEEE Trans. Systems, Man, and Cybernetics-part B: Cybernetics., vol. 32, no. 1,
    pp. 66-76, Feb. 2002.
    [28] E.H. Mamdani and S. Assilian, “An Experiment in Linguistic Synthesis with a Fuzzy Logic Controller,” Int. Journal of Man-Machine Studies, vol. 7, no. 1, pp.
    1-13, 1975.
    [29] 王文俊,“認識 Fuzzy-第二版”,全華科技圖書出版社,Oct. 1997。

    下載圖示
    QR CODE