簡易檢索 / 詳目顯示

研究生: 吳育丞
Wu, Yu-Chen
論文名稱: 三乙基胺促進連鎖反應合成多取代四氫呋喃苯并吡喃之架構
Amine-Promoted Domino Reaction: Construction of Multi-Substituted Tetrahydrofurano Benzopyrans
指導教授: 陳焜銘
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 107
中文關鍵詞: 有機連鎖反應丙烯基醋酸酯四氫呋喃苯并吡喃
英文關鍵詞: domino reaction, nitroallylic acetate, tetrahydrofurano benzopyrans
DOI URL: http://doi.org/10.6345/NTNU201900703
論文種類: 學術論文
相關次數: 點閱:70下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近幾年來,已經發現具有四氫呋喃苯并吡喃架構的天然物,甚至有些天然物擁有生物活性。目前探討合成此類架構的文獻相對稀少,本文提供新的合成途徑,藉由有機鹼三乙基胺,促進具有多親電位子的硝基丙烯基醋酸酯,與多親核位子的1-(2’-羥基苯基)丁烷-1,3-二酮,在低溫的條件下,進行高效率的連鎖反應Michael/acetalization/oxa-Michael反應,合成三環並聯線性的外消旋多取代四氫呋喃苯并吡喃,其架構具有四個連續的立體中心,包含兩個四級碳立體中心,產率可達62%。在反應選擇性方面,多取代四氫呋喃苯并吡喃與多取代呋喃比例為5:1-6:1。不對稱合成高純光學純度之呋喃苯并吡喃產物,後續在研究探討。

    In recent years, the tetrahydrofurano benzopyrans had been found from nature, some of which were bioactive. There was little literature on synthesis of these scaffolds. A new and convenient method for triethyl amine to promote effective domino reaction (Michael/acetalization/oxa-Michael reaction) of electrophilic nitroallylic acetate and nucleophilic 1-(2’-hydroxyphenyl)butane-1,3-dione. It was carried out under low temperature to synthesize racemic multi-substituted tetrahydrofurano benzopyrans bearing consecutive four stereogenic centers in moderate yield. And chemoselectivities was good (tetrahydrofurano benzopyrans : furan = 5:1-6:1). However, our efforts will focus on asymmetric synthesis of product in the future.

    第一章 序論 1 1-1 前言 1 1-2 有機合成 5 1-2-1 全合成 5 1-2-2 合成方法學 6 1-2-3 不對稱合成 6 1-3 有機連鎖反應 7 1-3-1 Domino Reaction 8 1-3-2 Cascade Reaction 10 1-3-3 Tandem Reaction 11 1-4 有機催化劑 12 1-4-1 烯胺催化 14 1-4-2 亞胺離子催化 15 1-4-3 氫鍵催化 15 1-5 丙烯基醋酸酯的背景與應用 16 1-5-1 丙烯基醋酸酯合成呋喃衍生物 17 1-5-2 丙烯基醋酸酯合成多種雜環化合物 19 1-6 四氫呋喃苯并吡喃結構與合成 20 1-6-1 四氫呋喃苯并吡喃結構的合成 22 1-6-2 四氫呋喃苯并吡喃類天然物的合成 25 1-7 研究動機 29 第二章 結果與討論 31 2-1 起始物的製備 31 2-1-1 起始物硝基丙烯基醋酸酯的製備 31 2-1-2 起始物1-(2’-羥基苯基)丁烷-1,3-二酮的製備 32 2-2 合成多取代四氫呋喃苯并吡喃反應之探討 34 2-2-1 溶劑的篩選 35 2-2-2 添加劑的篩選 36 2-2-3 操作方法的篩選 38 2-2-4 鹼當量數的篩選 39 2-2-5 反應濃度的篩選 40 2-2-6 溫度的篩選 41 2-2-7 硝基丙烯基醋酸酯當量數篩選 42 2-2-8 取代基效應 43 2-3 產物分子結構鑑定 45 2-3-1 X-ray 單晶繞射結構(產物132a) 45 2-3-2 NMR光譜解析 46 2-3-2-1 粗產物分子分析 46 2-3-2-2 多取代四氫呋喃苯并吡喃132a之氫譜解析 47 2-3-2-3 多取代四氫呋喃苯并吡喃132a之碳譜解析 48 2-3-2-4 多取代呋喃133a之氫譜解析 49 2-3-2-5 多取代呋喃133a之碳譜解析 50 2-4 反應機構探討 51 2-4-1 生成多取代四氫呋喃苯并吡喃反應機構 51 2-4-2 生成多取代呋喃反應機構 52 2-5 結論 53 第三章 實驗流程與數據 55 3-1 分析儀器及實驗操作 55 3-2 有機連鎖Michael/acetalization/oxa-Michael反應之實 驗步驟 57 3-3 光譜數據 58 第四章 參考文獻 65 附錄一 1H-NMR、13C-NMR、DEPT-135及DEPT-90光譜 69 附錄二 X-ray 結構解析與數據 97

    第四章 參考文獻
    1. https://en.wikipedia.org/wiki/Chemistry.
    2. https://en.wikipedia.org/wiki/Organic_chemistry.
    3. https://en.wikipedia.org/wiki/Thalidomide.
    4. https://en.wikipedia.org/wiki/Organic_synthesis.
    5. U. Eder, G. Sauer, R. Wiechert, Angew. Chem. Int. Ed. 1971, 83, 492.
    6. Z. G. Hajos, D. R. Parrish, J. Org. Chem. 1974, 39, 1615.
    7. https://en.wikipedia.org/wiki/Enantioselective_synthesis.
    8. P. G. Gassman, T. J. V. Bergen, D. P. Gilbert, B. W. Cue, J. Am. Chem. Soc. 1974, 96, 5495.
    9. L. F. Tietze, Chem. Rev. 1996, 96, 115.
    10. W.-D. Fessner, G. Sedelmeier, P. R. Spurr, G. Rihs, H. Prinzbach, J. Am. Chem. Soc. 1987, 109, 4626.
    11. T. Bui and C. F. Barbas III, Tetrahedron Lett. 2000, 41, 6951.
    12. H. Pellissier, Adv. Synth. Catal. 2012, 354, 237.
    13. D. Enders, M. R. M. Hüttl, C. Grondal, G. Raabe, Nature 2006, 441, 861.
    14. S. E. Denmark, A. Thorarensen, Chem. Rev. 1996, 96, 137.
    15. G. A. Kraus, M. J. Taschner, J. Am. Chem. Soc. 1980, 102, 1974.
    16. E. Knoevenagel, Ber. Dtsch. Chem. Ges.1898, 31, 2596.
    17. H. Pracejus, Justus Liebigs Ann. Chem. 1960, 634, 9.
    18. D. W. C. MacMillan, Nature 2008, 455, 304.
    19. D. W. C. MacMillan, G. Lelais, Aldrichim. Acta 2006, 39, 79.
    20. M. S. Sigman, E. N. Jacobsen, J. Am. Chem. Soc. 1998, 120, 4901.
    21. K. Morita, Z. Suzuki, H. Hirose, Chem. Soc. Jpn. 1968, 41, 2815.
    22. A. B. Baylis, M. E. D. Hillman, German Patent 2155113, 1972.
    23. S. Chandrasekhar, K. Mallikarjun, G. Pavankumarreddy, K. V. Rao, B. Jagadeesh, Chem. Commun. 2009, 4985.
    24. W.-Y. Huang, S. Anwar, K. Chen, Chem. Rec. 2017, 17, 363.
    25. D. K. Nair, S. M. Mobin, I. N.N. Namboothiri, Tetrahedron Lett. 2012, 53, 3349.
    26. S. Anwar, W.-Y. Huang, C.-H. Chen, Y.-S. Cheng, K. Chen, Chem. Eur. J. 2013, 19, 4344.
    27. H. Zhu, N. Shao, T. Chen H. Zou, Chem. Commun., 2013, 49, 7738.
    28. A. Ichihara, M. Nonaka, S. Sakamura, R. Sato, A. Tajimi, Chem. Lett. 1988, 27.
    29. Y. Lin, X. Wu, S. Feng, G. Jiang, J. Luo, S. Zhou, L. L. P. Vrijmoed, E. B. G. Jones, K. Krohn, K. Steingröver, F. Zsila, J. Org. Chem. 2001, 66, 6252.
    30. H. Gong, Z. Luo ,W. Chen, Z.-P. Feng, G.-L. Wang, H.-S. Sun, Mar. Drugs 2018, 16, 516.
    31. P. J. Cremins, T. W. Wallace, J. Chem. Soc., Chem. Commun. 1984, 1698.
    32. L. Diao, C. Yang, P. Wan, J. Am. Chem. Soc. 1995, 117, 5369.
    33. J. S. Yadav, B. V. Subba Reddy, Ch. Madhuri, G. Sabitha, B. Jagannadh, S. Kiran Kumarb, A. C. Kunwar, Tetrahedron Lett. 2001, 42, 6381.
    34. M. Anniyappan, D. Muralidharan, P. T. Perumal, Tetrahedron 2002, 58, 10301.
    35. J. Wang, F.-X. Xu, X.-F. Lin , Y.-G. Wang, Tetrahedron Lett. 2008, 49, 5208.
    36. S. R. Graham, J. A. Murphy, A. R. Kennedy, J. Chem. Soc., Perkin Trans. 1 1999, 3071.
    37. R. Rodriguez, R. M. Adlington, J. E. Moses, A.Cowley, J. E. Baldwin, Org. Lett. 2004, 6, 3617.
    38. J. D. Pettigrew, J. A. Bexrud, R. P. Freeman, P. D. Wilson, HeteroCycle 2004, 62, 445.
    39. I. Deb, M. Dadwal, S. M. Mobin, I. N. N. Namboothiri, Org Lett. 2006, 8, 1201.
    40. H.-H. Kuan, R. J. Reddy, K. Chen, Tetrahedron 2010, 66, 9875.
    41. A. Nishinaga, H. Ando, K. Maruyama, T. Mashino, Synthesis 1992, 839.
    42. T. Patonay, A. Vasas, A. Kiss-Szikszai, A. M. S. Silva, and J. A. S. Cavaleiro, Aust. J. Chem. 2010, 63, 1582.
    43. J. E. Baldwin, J. Chem. Soc., Chem. Commun. 1976, 734.
    44. M. Karplus, J. Chem. Phys. 1959, 30, 11.
    45. M. Karplus, J. Am. Chem. Soc. 1963, 85, 2870.

    下載圖示
    QR CODE