簡易檢索 / 詳目顯示

研究生: 陳郁霖
Chen, Yu-Lin
論文名稱: 以中孔洞沸石負載高密度銀銅奈米粒子之合成、鑑定及應用
Syntheses, Characterizations and Applications of Silver and Copper Nanoparticles Loaded onto Mesoporous Zeolites
指導教授: 劉沂欣
Liu, Yi-Hsin
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 75
中文關鍵詞: 中孔洞沸石銅奈米粒子銀奈米粒子硫化鋅奈米線氧化石墨烯
英文關鍵詞: Mesoporous zeolite nanoparticles, Ag nanoparticles, Cu nanoparticles, ZnS nanowires, Graphene oxide
DOI URL: http://doi.org/10.6345/THE.NTNU.DC.069.2018.B05
論文種類: 學術論文
相關次數: 點閱:157下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究利用介面活性劑自組裝行為形成微胞,再以沸石晶種共聚 形成具中孔洞形貌的中孔沸石奈米粒子(MZNs)。我們以MZNs 作 為基材,利用其中孔洞之空間侷限性,合成具固定尺寸之銀及銅奈米 粒子,並進一步以此金屬觸媒催化生長硫化鋅奈米線以及氧化石墨烯。 藉由配位基置換對奈米粒子進行表面改質,利用靜電力相吸的原理讓 金屬錯離子附載在中孔洞沸石材料上。我們經由電子顯微鏡、氣體等 溫吸脫附和X 光繞射光譜,對孔洞結構及奈米粒大小進行分析鑑定, 接續以Solution-Solid-Solid(SSS)法催化生長硫化鋅奈米線。銦錫氧 化物上生長中孔洞垂直沸石薄膜後,使用電化學方法還原金屬在中孔 洞內,合成出具有表面電漿共振效應的奈米金屬陣列,並用於發展具 表面增強拉曼技術之新穎奈米材料。

In this study, The MZNs (mesoporous zeolite nanoparticles) were applied as substrate to grow space-confined metal nanoparticles. The micelles were formed by the self-assembly behavior of the surfactant, and the mesoporous zeolite nanoparticles (MZNs) with mesoporous morphology were formed by co-condensation of zeolite seeds. We use MZNs as the substrate, and utilize the limitation of the pores to synthesize silver and copper nanoparticles with fixed size. The growth of zinc sulfide nanowires and graphene oxide were both catalyzed by this metal compound. The surface modification of the nanoparticles is carried out by ligand substitution, and the metal complex ions were loaded into the mesoporous zeolite material by electrostatic attraction. The pore structure and the size of nanoparticle were analyzed by electron microscopy, BET, EDS and X-ray diffraction spectroscopy. Then catalyzed the growth of zinc sulfide nanowire via Solution-Solid-Solid (SSS) method. After growing the vertical zeolite membrane on the indium tin oxide (ITO), the metal is reduced in the mesopores by electrochemical methods to synthesize nanoparticles of metal array. Surface plasma resonance effect develop with surface-enhanced Raman technology.

目 錄 摘 要 I Abstract II 目 錄 III 圖目錄 VII 表格目錄 IX 第一章 緒論 1 1.1 中孔洞材料簡介 1 1.2 中孔洞材料附載金屬奈米粒子 2 1.3 金屬奈米粒子催化奈米線 5 第二章 實驗方法 6 2.1 實驗藥品 6 2.2 實驗方法 7 2.2.1 中孔洞沸石奈米粒子合成 (Mesoporous Zeolitic Nanoparticles, MZNs) 7 2.2.2 MZNs表面修飾APTMS 7 2.2.3 表面吸附金屬EDTA錯離子 8 2.2.4 表面還原金屬EDTA錯離子 9 2.2.5 以中孔洞限制生長ZnS Nanowires 9 2.2.6 以電化學方法還原金屬 10 2.3 檢定方法 11 2.3.1 掃描式電子顯微鏡(Scanning Electron Microscopy, SEM) 11 2.3.2 穿透式電子顯微鏡(Transmission Electron Microscopy, TEM) 11 2.3.3 X光粉末繞射儀(Powder X-ray Diffraction, PXRD) 12 2.3.4 元素分析儀(Elemental Analyzer, EA) 12 2.3.5 氣體等溫吸脫附分析(Isotherm Adsorption Analysis) 13 2.3.6 能量色散光譜 (EDS) 15 2.3.7 酸鹼度測定計(pH meter) 15 第三章 結果與討論 17 3.1 MZNs孔洞性質之探討 17 3.1.1 氣體(N2, Ar)對分析中孔之影響(SBET, BJH) 18 3.1.2 氣體(N2, Ar, CO2)對分析微孔之影響(t-plot,DFT) 20 3.2 MZNs表面性質之差異 24 3.2.1 MZNs孔洞性質歧化之探討 24 3.2.2 有機官能基化之條件分析 28 3.2.3 表面電荷Zeta Potential探討 32 3.3 附載Cu-EDTA於MZNs及其應用 34 3.3.1 吸附(pH值、溫度、濃度)的影響 34 3.3.2 還原(NaBH4、EtOH)的影響 43 3.3.3 以Cu@MZNs催化生長ZnS nanowires 45 3.3.4 以Cu@MZNs催化生長奈米碳管 47 3.4 Ag-EDTA吸附於MZNs表面並還原 50 3.4.1 吸附Ag-EDTA 50 3.4.2 還原(溫度、濃度)的影響 51 3.4.3 以Ag@MZNs催化生長ZnS nanowires 55 3.5 以電化學方法沉積Cu在垂直中孔薄膜(MZTF) 67 3.5.1 空白ITO電解還原CuSO4 67 3.5.2 生長MZTF於空白ITO上 70 第四章 結論 73 參考文獻 74

[1] Kresge, C. T.; Leonowicz, M. E.; Roth, W. J.; Vartuli, J. C.; Beck, J. S., Nature 1992, 359,
710.
[2] Li, Z.; Barnes, J. C.; Bosoy, A.; Stoddart, J. F.; Zink, J. I., Chem. Soc. Rev. 2012, 41, 2590.
[3] Slowing, I. I.; Vivero-Escoto, J. L.; Trewyn, B. G.; Lin, V. S. Y., J. Mater. Chem. 2010,
20, 7924.
[4] Lai, C. Y.; Trewyn, B. G.; Jeftinija, D. M.; Jeftinija, K.; Xu, S.; Jeftinija, S.; Lin, V. S. Y.,
J. Am. Chem. Soc. 2003, 125, 4451.
[5] Slowing, I. I.; Vivero-Escoto, J. L.; Wu, C. W.; Lin, V. S. Y., Adv. Drug Deliv. Rev. 2008,
60, 1278.
[6] Slowing, I. I.; Trewyn, B. G.; Giri, S.; Lin, V. S. Y., Adv. Funct. Mater. 2007, 17, 1225.
[7] Wu, S. H.; Mou, C. Y.; Lin, H. P., Chem. Soc. Rev. 2013, 42, 3862.
[8] Taguchi, A.; Schüth, F., Microporous Mesoporous Mater. 2005, 77, 1.
[9] Lee, S. K.; Liu, X.; Cabeza, V. S.; Jensen, K. F., Lab Chip 2012, 12, 4080.
[10] Wang, Y. W.; Kao, K. C.; Wang, J. K.; Mou, C. Y., The Journal of Physical Chemistry
C 2016, 120, 24382.
[11] Lai, Y. H.; Chen, S. W.; Hayashi, M.; Shiu, Y. J.; Huang, C. C.; Chuang, W. T.; Su, C.
J.; Jeng, H. C.; Chang, J. W.; Lee, Y. C.; Su, A. C.; Mou, C. Y.; Jeng, U. S., Adv. Funct. Mater.
2014, 24, 2544.
[12] Link, S.; El-Sayed, M. A., J. Phys. Chem. B 1999, 1999, 8410.
[13] Huan, C.; Clinton, F. B.; Sean, J. E.; Mark, W. G.; Jr., J. A. P., J. Am. Chem. Soc. 2010,
132, 7514.
[14] Catalina, M. J.; Eric, H., J. Nanopart. Res. 2010, 12, 1531.
[15] Yan, X. F.; Wang, L. Z.; Qi, D. Y.; J. Y. Lei; Shen, B.; Sen, T.; Zhang, J. L., RSC Adv.
2014, 4, 57743.
[16] Lane, L. A.; Qian, X.; Nie, S., Chem Rev 2015, 115, 10489.
[17] Wustholz, K. L.; Henry, A. I.; McMahon, J. M.; Freeman, R. G.; Valley, N.; Piotti, M.
E.; Natan, M. J.; Schatz, G. C.; Duyne, R. P. V., J. Am. Chem. Soc. 2010, 132, 10903.
[18] Halvorson, R. A.; Vikesland, P. J., Environ. Sci. Technol. 2010, 44, 7749.
[19] Liu, H.; Yang, L.; Liu, J., TrAC, Trends Anal. Chem. 2016, 80, 364.
[20] Wei, H.; Abtahi, S. M. H.; Vikesland, P. J., Environ. Sci. Nano 2015, 2, 120.
[21] Wang, J.; Chen, K.; Gong, M.; Xu, B.; Yang, Q., Nano Lett. 2013, 13, 3996.
75
[22] Sheykhan, M.; Yahyazadeh, A.; Rahemizadeh, Z., RSC Adv. 2016, 6, 34553.
[23] Reim, N.; Littig, A.; Behn, D.; Mews, A., Journal of the American Chemical Society
2013, 135, 18520.

下載圖示
QR CODE