簡易檢索 / 詳目顯示

研究生: 李致穎
Lee, Chih-Ying
論文名稱: 以斑馬魚為動物模式研究奈米金屬對離子細胞之毒性
Using Zebrafish as a Model Animal to Investigate the Toxicities of Nanometals to Ionocytes
指導教授: 林豊益
Lin, Li-Yih
洪君琳
Horng, Jiun-Lin
學位類別: 博士
Doctor
系所名稱: 生命科學系
Department of Life Science
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 70
中文關鍵詞: 奈米銀顆粒奈米銅顆粒斑馬魚離子細胞毒性
英文關鍵詞: AgNP, CuNP, zebrafish, ionocyte, toxicity
DOI URL: http://doi.org/10.6345/NTNU202100304
論文種類: 學術論文
相關次數: 點閱:214下載:16
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

在21世紀,奈米科技快速發展,應用廣泛,而這也同時增加了人類接觸各種不同奈米顆粒的機會,因此針對其毒性的研究,也相形越來越重要。而其中,金屬奈米顆粒對於魚類離子細胞的潛在毒性仍未有充分的研究。本篇研究是以斑馬魚胚胎為動物模式,探討奈米銀和奈米銅對斑馬魚胚胎皮膚上的離子細胞功能之毒性作用。實驗方式是將斑馬魚的胚胎分別浸泡於奈米銀和奈米銅96小時(受精後4〜100小時(hpf))後,檢測其全身離子含量及皮膚上離子細胞的數量和功能。暴露於奈米銀96小時後,全身Na離子和K離子含量在奈米銀濃度為3 mg/L組別中顯著下降,而Ca離子含量在濃度 ≥ 0.1 mg/L時下降。以Scanning ion-selective electrode technique(SIET)檢測胚胎皮膚的H離子分泌功能,發現在3 mg/L時功能顯著降低。以rhodamine 123(粒線體標記)來標記離子細胞,其密度在1和3 mg/L時分別降低了25%和55%,而離子細胞外觀也從橢圓形變形為棘狀形。進一步以抗體標記染色的方式檢測不同離子細胞亞型,發現奈米銀對富含H+-ATPase的HR細胞和富含Na+/K+-ATPase的NaR細胞造成不同的損傷。進一步使用掃描電子顯微鏡觀察離子細胞,其頂端開口有明顯的萎縮,這和正常功能的喪失相關。另一方面,斑馬魚胚胎暴露於奈米銅後,觀察到相同的趨勢。濃度在 ≥ 0.1 mg/L時,全身Na離子和Ca離子含量顯著降低,而在 ≥ 1 mg/L時,K離子含量降低。而濃度 ≥ 1 mg/L時,胚胎皮膚的H離子排泄功能顯著降低。在奈米銅濃度 ≥ 0.1 mg/L時,用rhodamine 123標記的活離子細胞數量顯著減少。使用掃描電子顯微鏡觀察離子細胞,其頂端開口同樣有明顯的萎縮。我們也以免疫染色方式進行離子細胞亞型(HR細胞和NaR細胞) 標記,兩者都在濃度 ≥ 1 mg/L時降低。透過檢測離子轉運蛋白/通道和鈣離子調節激素mRNA表現量,發現功能的損傷也藉由基因表達的變化反映出來。綜合以上結果證實在斑馬魚胚胎早期,奈米銀和奈米銅對其皮膚離子細胞會產生毒性和並影響其離子調節的功能。由於斑馬魚離子細胞和人類腎臟細胞,在生理功能上和對環境變化的調節反應上都有高度的相似,故此一結果也提醒我們奈米金屬對人類的腎臟細胞可能有潛在毒性。

Nanotechnology is a new research area that is explosively growing across a wide range of industries. It extensively appears in our daily lives in many fields. However, The potential toxicity of metals nanoparticles to the ionocytes of fish is still unclear. This study used zebrafish embryos as a model to investigate the toxic effects of AgNPs and CuNPs on ion regulation by skin ionocytes. Zebrafish embryos were exposed to AgNPs or CuNPs for 96 h (4~100 h post-fertilization (hpf)). After 96 h of exposure to AgNPs, whole-body Na+ and K+ contents significantly decreased at 3 mg/L, while Ca2+ contents decreased at ≥ 0.1 mg/L. H+ secretion by the skin significantly decreased at 3 mg/L. The density of skin ionocytes labeled with rhodamine 123 (a mitochondrion marker) decreased by 25% and 55% at 1 and 3 mg/L, respectively; and 54% of ionocytes (at 3 mg/L) were deformed from an oval to a spinous shape. We also used immunocytochemistry to label two major subtypes of ionocytes, the H+-ATPase-rich ionocytes (HR cells), and Na+/K+-ATPase-rich ionocytes (NaR cells). The number of HR cells significantly decreased by 30% and 41% in 1 and 3 mg/L AgNP groups, respectively; and the apical opening of HR cells became smaller. In contrast, the number of NaR cells significantly increased by 29% and 43% in 1 and 3 mg/L groups, respectively, while these cells deformed from an oval to a spinous shape. After exposure to CuNPs, whole-body Na+ and Ca2+ contents were significantly reduced at ≥ 0.1 mg/L, while the K+ content had decreased at ≥ 1 mg/L. H+ excretion by the skin significantly decreased at ≥ 1 mg/L. The number of living ionocytes labeled with rhodamine123 (a mitochondrion marker) had significantly decreased with ≥ 0.1 mg/L CuNPs. The ionocyte subtypes of H+-ATPase-rich (HR) and Na+/K+-ATPase-rich (NaR) cells were also labeled by immunostaining and had decreased with ≥ 1 mg/L. Shrinkage of the apical opening of ionocytes was revealed by scanning electronic microscopy. Functional impairment was also reflected by changes in gene expressions, including ion transporters/channels and Ca2+-regulatory hormones. This study revealed the toxicity of AgNPs and CuNPs to skin ionocytes and ion regulation in the early stages of zebrafish embryos. The damage to zebrafish ionocytes by AgNPs and CuNPs could also be a warning to human beings, because ionocytes are functionally similar to our renal epithelial cells.

1. 研究背景 1 1.1. 現今的奈米科技 1 1.2. 奈米銀顆粒的毒性 2 1.3. 奈米銅顆粒的毒性 4 1.4. 以斑馬魚為動物模式 5 1.5. 斑馬魚的離子細胞 6 1.6. 奈米顆粒的毒性機轉 8 2. 研究目標 10 2.1. 探討奈米銀顆粒對斑馬魚胚胎時期的離子細胞造成的毒性傷害 10 2.2. 探討奈米銅顆粒對斑馬魚胚胎時期的離子細胞造成的毒性傷害 10 3. 研究材料與方法 12 3.1. 斑馬魚 12 3.2. 奈米銀顆粒的暴露 12 3.3. 奈米銅顆粒的暴露 13 3.4. 整體胚胎離子含量測量 13 3.5. 離子細胞染色及數量測定 14 3.6. 使用免疫化學染色法測定特定離子細胞 14 3.7. 使用電子掃描顯微鏡觀察離子細胞 15 3.8. 掃描式離子選擇電極技術Scanning ion-selective electrode technique (SIET) 16 3.9. RNA的製備 17 3.10.反轉錄Reverse-transcription (RT) 18 3.11.Real-time quantitative polymerase chain reaction (qPCR) 18 3.12.統計分析 19 4. 研究結果 20 4.1. AgNPs對斑馬魚胚胎體內離子含量和酸排除的影響 20 4.2. AgNPs對斑馬魚胚胎離子細胞數量和型態的影響 20 4.3. CuNPs對斑馬魚胚胎體內離子含量和酸排除的影響 22 4.4. CuNPs對斑馬魚胚胎離子細胞數量和型態的影響 22 4.5. CuNPs對斑馬魚胚胎mRNA表現量的影響 23 5. 討論 25 5.1. 奈米銀顆粒的暴露,造成斑馬魚胚胎離子調控的傷害 25 5.2. 奈米銅顆粒的暴露,造成斑馬魚胚胎離子調控的傷害 30 6. 結論 37 參考資料 38 表 1 55 圖 1~15 56

Abbas, L., Hajihashemi, S., Stead, L.F., Cooper, G.J., Ware, T.L., Munsey, T.S., Whitfield, T.T., White, S.J., 2011. Functional and developmental expression of a zebrafish Kir1.1 (ROMK) potassium channel homologue Kcnj1. J Physiol 589, 1489-1503.
Aburto, N.J., Ziolkovska, A., Hooper, L., Elliott, P., Cappuccio, F.P., Meerpohl, J.J., 2013. Effect of lower sodium intake on health: systematic review and meta-analyses. BMJ 346, f1326.
Ahamed, M., Alsalhi, M.S., Siddiqui, M.K., 2010. Silver nanoparticle applications and human health. Clin Chim Acta 411, 1841-1848.
Ameh, T., Sayes, C.M., 2019. The potential exposure and hazards of copper nanoparticles: A review. Environ Toxicol Pharmacol 71, 103220, Epub 2019 Jul 5.
Asharani, P.V., Lian Wu, Y., Gong, Z., Valiyaveettil, S., 2008. Toxicity of silver nanoparticles in zebrafish models. Nanotechnology 19, 255102, Epub 2008 May 14.
Asharani, P.V., Lianwu, Y., Gong, Z., Valiyaveettil, S., 2011. Comparison of the toxicity of silver, gold and platinum nanoparticles in developing zebrafish embryos. Nanotoxicology 5, 43-54.
Assadian, E., Zarei, M.H., Gilani, A.G., Farshin, M., Degampanah, H., Pourahmad, J., 2018. Toxicity of Copper Oxide (CuO) Nanoparticles on Human Blood Lymphocytes. Biol Trace Elem Res 184, 350-357.
Bai, W., Tian, W., Zhang, Z., He, X., Ma, Y., Liu, N., Chai, Z., 2010. Effects of copper nanoparticles on the development of zebrafish embryos. Journal of nanoscience and nanotechnology 10, 8670-8676.
Baracca, A., Sgarbi, G., Solaini, G., Lenaz, G., 2003. Rhodamine 123 as a probe of mitochondrial membrane potential: evaluation of proton flux through F(0) during ATP synthesis. Biochim Biophys Acta 1606, 137-146.
Bers, D.M., 2002. Cardiac excitation-contraction coupling. Nature 415, 198-205.
Bilberg, K., Hovgaard, M.B., Besenbacher, F., Baatrup, E., 2012. In Vivo Toxicity of Silver Nanoparticles and Silver Ions in Zebrafish (Danio rerio). J Toxicol 2012, 293784, Epub 2011 Dec 1.
Bilberg, K., Malte, H., Wang, T., Baatrup, E., 2010. Silver nanoparticles and silver nitrate cause respiratory stress in Eurasian perch (Perca fluviatilis). Aquat Toxicol 96, 159-165.
Braz-Mota, S., Campos, D.F., MacCormack, T.J., Duarte, R.M., Val, A.L., Almeida-Val, V.M.F., 2018. Mechanisms of toxic action of copper and copper nanoparticles in two Amazon fish species: Dwarf cichlid (Apistogramma agassizii) and cardinal tetra (Paracheirodon axelrodi). Sci Total Environ 630, 1168-1180.
Burggren, W., Bautista, N., 2019. Invited review: Development of acid-base regulation in vertebrates. Comp Biochem Physiol A Mol Integr Physiol 236, 110518, Epub 2019 Jun 28.
Chae, Y.J., Pham, C.H., Lee, J., Bae, E., Yi, J., Gu, M.B., 2009. Evaluation of the toxic impact of silver nanoparticles on Japanese medaka (Oryzias latipes). Aquat Toxicol 94, 320-327.
Chakraborty, C., Sharma, A.R., Sharma, G., Lee, S.S., 2016. Zebrafish: A complete animal model to enumerate the nanoparticle toxicity. J Nanobiotechnology 14, 65.
Chio, C.P., Chen, W.Y., Chou, W.C., Hsieh, N.H., Ling, M.P., Liao, C.M., 2012. Assessing the potential risks to zebrafish posed by environmentally relevant copper and silver nanoparticles. Sci. Total Environ. 420, 111-118.
Choi, J.E., Kim, S., Ahn, J.H., Youn, P., Kang, J.S., Park, K., Yi, J., Ryu, D.Y., 2010. Induction of oxidative stress and apoptosis by silver nanoparticles in the liver of adult zebrafish. Aquat Toxicol 100, 151-159.
Dai, Y.J., Jia, Y.F., Chen, N., Bian, W.P., Li, Q.K., Ma, Y.B., Chen, Y.L., Pei, D.S., 2014. Zebrafish as a model system to study toxicology. Environ Toxicol Chem 33, 11-17.
De Matteis, V., Rinaldi, R., 2018. Toxicity Assessment in the Nanoparticle Era. Adv Exp Med Biol 1048, 1-19.
Emaus, R.K., Grunwald, R., Lemasters, J.J., 1986. Rhodamine 123 as a probe of transmembrane potential in isolated rat-liver mitochondria: spectral and metabolic properties. Biochim Biophys Acta 850, 436-448.
Fahmy, H.M., Ebrahim, N.M., Gaber, M.H., 2020. In-vitro evaluation of copper/copper oxide nanoparticles cytotoxicity and genotoxicity in normal and cancer lung cell lines. J Trace Elem Med Biol 60, 126481, Epub 2020 Feb 27.
Ferlini, C., Scambia, G., 2007. Assay for apoptosis using the mitochondrial probes, Rhodamine123 and 10-N-nonyl acridine orange. Nat Protoc 2, 3111-3114.
Foley, S., Crowley, C., Smaihi, M., Bonfils, C., Erlanger, B.F., Seta, P., Larroque, C., 2002. Cellular localisation of a water-soluble fullerene derivative. Biochem Biophys Res Commun 294, 116-119.
Furukawa, F., Watanabe, S., Kakumura, K., Hiroi, J., Kaneko, T., 2014. Gene expression and cellular localization of ROMKs in the gills and kidney of Mozambique tilapia acclimated to fresh water with high potassium concentration. Am J Physiol Regul Integr Comp Physiol 307, R1303-1312.
Gottschalk, F., Ort, C., Scholz, R.W., Nowack, B., 2011. Engineered nanomaterials in rivers--exposure scenarios for Switzerland at high spatial and temporal resolution. Environ Pollut 159, 3439-3445.
Gottschalk, F., Sun, T., Nowack, B., 2013. Environmental concentrations of engineered nanomaterials: review of modeling and analytical studies. Environ Pollut 181, 287-300.
Griffitt, R.J., Hyndman, K., Denslow, N.D., Barber, D.S., 2009. Comparison of molecular and histological changes in zebrafish gills exposed to metallic nanoparticles. Toxicol Sci 107, 404-415.
Griffitt, R.J., Weil, R., Hyndman, K.A., Denslow, N.D., Powers, K., Taylor, D., Barber, D.S., 2007. Exposure to copper nanoparticles causes gill injury and acute lethality in zebrafish (Danio rerio). Environ Sci Technol 41, 8178-8186.
Guh, Y.J., Hwang, P.P., 2017. Insights into molecular and cellular mechanisms of hormonal actions on fish ion regulation derived from the zebrafish model. Gen Comp Endocrinol 251, 12-20.
Guh, Y.J., Lin, C.H., Hwang, P.P., 2015. Osmoregulation in zebrafish: ion transport mechanisms and functional regulation. EXCLI J 14, 627-659.
Henson, T.E., Navratilova, J., Tennant, A.H., Bradham, K.D., Rogers, K.R., Hughes, M.F., 2019. In vitro intestinal toxicity of copper oxide nanoparticles in rat and human cell models. Nanotoxicology 13, 795-811.
Hoenderop, J.G., Nilius, B., Bindels, R.J., 2005. Calcium absorption across epithelia. Physiol Rev 85, 373-422.
Horng, J.L., Chao, P.L., Chen, P.Y., Shih, T.H., Lin, L.Y., 2015. Aquaporin 1 Is Involved in Acid Secretion by Ionocytes of Zebrafish Embryos through Facilitating CO2 Transport. PLoS One 10, e0136440.
Horng, J.L., Lin, L.Y., Hwang, P.P., 2009. Functional regulation of H+-ATPase-rich cells in zebrafish embryos acclimated to an acidic environment. Am J Physiol Cell Physiol 296, C682-692.
Horng, J.L., Yu, L.L., Liu, S.T., Chen, P.Y., Lin, L.Y., 2017. Potassium Regulation in Medaka (Oryzias latipes) Larvae Acclimated to Fresh Water: Passive Uptake and Active Secretion by the Skin Cells. Sci Rep 7, 16215.
Howe, K., Clark, M.D., Torroja, C.F., Torrance, J., Berthelot, C., Muffato, M., et al., 2013. The zebrafish reference genome sequence and its relationship to the human genome. Nature 496, 498-503.
Hua, J., Vijver, M.G., Ahmad, F., Richardson, M.K., Peijnenburg, W.J., 2014. Toxicity of different-sized copper nano- and submicron particles and their shed copper ions to zebrafish embryos. Environ Toxicol Chem 33, 1774-1782.
Hwang, P.P., Chou, M.Y., 2013. Zebrafish as an animal model to study ion homeostasis. Pflugers Arch 465, 1233-1247.
Hwang, P.P., Lee, T.H., Lin, L.Y., 2011. Ion regulation in fish gills: recent progress in the cellular and molecular mechanisms. Am J Physiol Regul Integr Comp Physiol 301, R28-47.
Ip, Y.K., Chew, S.F., 2010. Ammonia production, excretion, toxicity, and defense in fish: a review. Front Physiol 1, 134.
Jin, S., Ye, K., 2007. Nanoparticle-mediated drug delivery and gene therapy. Biotechnol Prog 23, 32-41.
Laban, G., Nies, L.F., Turco, R.F., Bickham, J.W., Sepulveda, M.S., 2010. The effects of silver nanoparticles on fathead minnow (Pimephales promelas) embryos. Ecotoxicology 19, 185-195.
Lafont, A.G., Wang, Y.F., Chen, G.D., Liao, B.K., Tseng, Y.C., Huang, C.J., Hwang, P.P., 2011. Involvement of calcitonin and its receptor in the control of calcium-regulating genes and calcium homeostasis in zebrafish (Danio rerio). J Bone Miner Res 26, 1072-1083.
Liao, B.K., Chen, R.D., Hwang, P.P., 2009. Expression regulation of Na+-K+-ATPase alpha1-subunit subtypes in zebrafish gill ionocytes. Am J Physiol Regul Integr Comp Physiol 296, R1897-1906.
Liao, B.K., Deng, A.N., Chen, S.C., Chou, M.Y., Hwang, P.P., 2007. Expression and water calcium dependence of calcium transporter isoforms in zebrafish gill mitochondrion-rich cells. BMC Genomics 8, 354.
Lin, C.H., Hwang, P.P., 2016. The Control of Calcium Metabolism in Zebrafish (Danio rerio). Int J Mol Sci 17, 1783.
Lin, C.H., Su, C.H., Hwang, P.P., 2014. Calcium-sensing receptor mediates Ca(2+) homeostasis by modulating expression of PTH and stanniocalcin. Endocrinology 155, 56-67.
Lin, L.Y., Horng, J.L., Kunkel, J.G., Hwang, P.P., 2006. Proton pump-rich cell secretes acid in skin of zebrafish larvae. Am J Physiol Cell Physiol 290, C371-378.
Lin, L.Y., Hwang, P.P., 2001. Modification of morphology and function of integument mitochondria-rich cells in tilapia larvae (Oreochromis mossambicus) acclimated to ambient chloride levels. Physiol Biochem Zool 74, 469-476.
Lin, L.Y., Hwang, P.P., 2004. Mitochondria-rich cell activity in the yolk-sac membrane of tilapia (Oreochromis mossambicus) larvae acclimatized to different ambient chloride levels. J Exp Biol 207, 1335-1344.
Lin, L.Y., Pang, W., Chuang, W.M., Hung, G.Y., Lin, Y.H., Horng, J.L., 2013. Extracellular Ca(2+) and Mg(2+) modulate aminoglycoside blockade of mechanotransducer channel-mediated Ca(2+) entry in zebrafish hair cells: an in vivo study with the SIET. Am J Physiol Cell Physiol 305, C1060-1068.
Markus, A.A., Parsons, J.R., Roex, E.W., de Voogt, P., Laane, R.W., 2016. Modelling the transport of engineered metallic nanoparticles in the river Rhine. Water Res 91, 214-224.
Massarsky, A., Dupuis, L., Taylor, J., Eisa-Beygi, S., Strek, L., Trudeau, V.L., Moon, T.W., 2013. Assessment of nanosilver toxicity during zebrafish (Danio rerio) development. Chemosphere 92, 59-66.
Mattsson, K., Johnson, E.V., Malmendal, A., Linse, S., Hansson, L.A., Cedervall, T., 2017. Brain damage and behavioural disorders in fish induced by plastic nanoparticles delivered through the food chain. Sci Rep 7, 11452.
Maurer-Jones, M.A., Gunsolus, I.L., Murphy, C.J., Haynes, C.L., 2013. Toxicity of engineered nanoparticles in the environment. Anal Chem 85, 3036-3049.
Maynard, A.D., Warheit, D.B., Philbert, M.A., 2011. The new toxicology of sophisticated materials: nanotoxicology and beyond. Toxicol Sci 120 Suppl 1, S109-129.
McNeil, P.L., Boyle, D., Henry, T.B., Handy, R.D., Sloman, K.A., 2014. Effects of metal nanoparticles on the lateral line system and behaviour in early life stages of zebrafish (Danio rerio). Aquat Toxicol 152, 318-323.
Musee, N., 2011. Simulated environmental risk estimation of engineered nanomaterials: a case of cosmetics in Johannesburg City. Hum Exp Toxicol 30, 1181-1195.
Muth-Köhne, E., Sonnack, L., Schlich, K., Hischen, F., Baumgartner, W., Hund-Rinke, K., Schäfers, C., Fenske, M. 2013. The toxicity of silver nanoparticles to zebrafish embryos increases through sewage treatment processes. Ecotoxicology. 22, 1264-1277.
Ng, A.N., de Jong-Curtain, T.A., Mawdsley, D.J., White, S.J., Shin, J., Appel, B., Dong, P.D., Stainier, D.Y., Heath, J.K., 2005. Formation of the digestive system in zebrafish: III. Intestinal epithelium morphogenesis. Dev Biol 286, 114-135.
Nishimura, Y., Inoue, A., Sasagawa, S., Koiwa, J., Kawaguchi, K., Kawase, R., Maruyama, T., Kim, S., Tanaka, T., 2016. Using zebrafish in systems toxicology for developmental toxicity testing. Congenit Anom (Kyoto) 56, 18-27.
Nomura, N., Shoda, W., Uchida, S., 2019. Clinical importance of potassium intake and molecular mechanism of potassium regulation. Clin Exp Nephrol 23, 1175-1180.
Osborne, O.J., Lin, S., Chang, C.H., Ji, Z., Yu, X., Wang, X., Lin, S., Xia, T., Nel, A.E., 2015. Organ-Specific and Size-Dependent Ag Nanoparticle Toxicity in Gills and Intestines of Adult Zebrafish. ACS Nano 9, 9573-9584.
Park, K., Tuttle, G., Sinche, F., Harper, S.L., 2013. Stability of citrate-capped silver nanoparticles in exposure media and their effects on the development of embryonic zebrafish (Danio rerio). Arch Pharm Res 36, 125-133.
Perry, S.F., 1997. The chloride cell: structure and function in the gills of freshwater fishes. Annu Rev Physiol 59, 325-347.
Perugini, P., Simeoni, S., Scalia, S., Genta, I., Modena, T., Conti, B., Pavanetto, F., 2002. Effect of nanoparticle encapsulation on the photostability of the sunscreen agent, 2-ethylhexyl-p-methoxycinnamate. Int J Pharm 246, 37-45.
Piao, M.J., Kang, K.A., Lee, I.K., Kim, H.S., Kim, S., Choi, J.Y., Choi, J., Hyun, J.W., 2011. Silver nanoparticles induce oxidative cell damage in human liver cells through inhibition of reduced glutathione and induction of mitochondria-involved apoptosis. Toxicol Lett 201, 92-100.
Powers, C.M., Slotkin, T.A., Seidler, F.J., Badireddy, A.R., Padilla, S., 2011. Silver nanoparticles alter zebrafish development and larval behavior: distinct roles for particle size, coating and composition. Neurotoxicol Teratol 33, 708-714.
Rai, P.K., Kumar, V., Lee, S., Raza, N., Kim, K.H., Ok, Y.S., Tsang, D.C.W., 2018. Nanoparticle-plant interaction: Implications in energy, environment, and agriculture. Environ Int 119, 1-19.
Sanchez-Lopez, E., Gomes, D., Esteruelas, G., Bonilla, L., Lopez-Machado, A.L., Galindo, R., Cano, A., Espina, M., Ettcheto, M., Camins, A., Silva, A.M., Durazzo, A., Santini, A., Garcia, M.L., Souto, E.B., 2020. Metal-Based Nanoparticles as Antimicrobial Agents: An Overview. Nanomaterials (Basel) 10, 292.
Sarhan, O.M., Hussein, R.M., 2014. Effects of intraperitoneally injected silver nanoparticles on histological structures and blood parameters in the albino rat. Int J Nanomedicine 9, 1505-1517.
Schultz, A.G., Ong, K.J., MacCormack, T., Ma, G., Veinot, J.G., Goss, G.G., 2012. Silver nanoparticles inhibit sodium uptake in juvenile rainbow trout (Oncorhynchus mykiss). Environ Sci Technol 46, 10295-10301.
Scown, T.M., Santos, E.M., Johnston, B.D., Gaiser, B., Baalousha, M., Mitov, S., Lead, J.R., Stone, V., Fernandes, T.F., Jepson, M., van Aerle, R., Tyler, C.R., 2010. Effects of aqueous exposure to silver nanoparticles of different sizes in rainbow trout. Toxicol Sci 115, 521-534.
Shaw, B.J., Al-Bairuty, G., Handy, R.D., 2012. Effects of waterborne copper nanoparticles and copper sulphate on rainbow trout, (Oncorhynchus mykiss): physiology and accumulation. Aquat Toxicol 116-117, 90-101
Shaw, B.J., Handy, R.D., 2011. Physiological effects of nanoparticles on fish: a comparison of nanometals versus metal ions. Environ Int 37, 1083-1097.
Shen, M., Zhang, Y., Zhu, Y., Song, B., Zeng, G., Hu, D., Wen, X., Ren, X., 2019. Recent advances in toxicological research of nanoplastics in the environment: A review. Environ Pollut 252, 511-521.
Shih, T.H., Horng, J.L., Hwang, P.P., Lin, L.Y., 2008. Ammonia excretion by the skin of zebrafish (Danio rerio) larvae. Am J Physiol Cell Physiol 295, C1625-1632.
Shih, T.H., Horng, J.L., Lai, Y.T., Lin, L.Y., 2013. Rhcg1 and Rhbg mediate ammonia excretion by ionocytes and keratinocytes in the skin of zebrafish larvae: H+-ATPase-linked active ammonia excretion by ionocytes. Am J Physiol Regul Integr Comp Physiol 304, R1130-1138.
Shih, T.H., Horng, J.L., Liu, S.T., Hwang, P.P., Lin, L.Y., 2012. Rhcg1 and NHE3b are involved in ammonium-dependent sodium uptake by zebrafish larvae acclimated to low-sodium water. Am J Physiol Regul Integr Comp Physiol 302, R84-93.
Song, Y.F., Luo, Z., Huang, C., Chen, Q.L., Pan, Y.X., Xu, Y.H., 2015. Endoplasmic Reticulum Stress-Related Genes in Yellow Catfish Pelteobagrus fulvidraco: Molecular Characterization, Tissue Expression, and Expression Responses to Dietary Copper Deficiency and Excess. G3 (Bethesda) 5, 2091-2104.
Strahle, U., Scholz, S., Geisler, R., Greiner, P., Hollert, H., Rastegar, S., Schumacher, A., Selderslaghs, I., Weiss, C., Witters, H., Braunbeck, T., 2012. Zebrafish embryos as an alternative to animal experiments--a commentary on the definition of the onset of protected life stages in animal welfare regulations. Reprod Toxicol 33, 128-132.
Sun, Y., Zhang, G., He, Z., Wang, Y., Cui, J., Li, Y., 2016. Effects of copper oxide nanoparticles on developing zebrafish embryos and larvae. Int J Nanomedicine 11, 905-918.
Tai, Z., Guan, P., Wang, Z., Li, L., Zhang, T., Li, G., Liu, J.X., 2019. Common responses of fish embryos to metals: an integrated analysis of transcriptomes and methylomes in zebrafish embryos under the stress of copper ions or silver nanoparticles. Metallomics 11, 1452-1464.
Tang, J., Xiong, L., Wang, S., Wang, J., Liu, L., Li, J., Yuan, F., Xi, T., 2009. Distribution, translocation and accumulation of silver nanoparticles in rats. J Nanosci Nanotechnol 9, 4924-4932.
Tesser, M.E., de Paula, A.A., Risso, W.E., Monteiro, R.A., do Espirito Santo Pereira, A., Fraceto, L.F., Bueno Dos Reis Martinez, C., 2020. Sublethal effects of waterborne copper and copper nanoparticles on the freshwater Neotropical teleost Prochilodus lineatus: A comparative approach. Sci Total Environ 704, 135332.
Teves, J.M.Y., Bhargava, V., Kirwan, K.R., Corenblum, M.J., Justiniano, R., Wondrak, G.T., Anandhan, A., Flores, A.J., Schipper, D.A., Khalpey, Z., Sligh, J.E., Curiel-Lewandrowski, C., Sherman, S.J., Madhavan, L., 2017. Parkinson's Disease Skin Fibroblasts Display Signature Alterations in Growth, Redox Homeostasis, Mitochondrial Function, and Autophagy. Front Neurosci 11, 737.
Tian, J., Wong, K.K., Ho, C.M., Lok, C.N., Yu, W.Y., Che, C.M., Chiu, J.F., Tam, P.K., 2007. Topical delivery of silver nanoparticles promotes wound healing. ChemMedChem 2, 129-136.
Tseng, D.Y., Chou, M.Y., Tseng, Y.C., Hsiao, C.D., Huang, C.J., Kaneko, T., Hwang, P.P., 2009. Effects of stanniocalcin 1 on calcium uptake in zebrafish (Danio rerio) embryo. Am J Physiol Regul Integr Comp Physiol 296, R549-557.
Vance, M.E., Kuiken, T., Vejerano, E.P., McGinnis, S.P., Hochella, M.F., Jr., Rejeski, D., Hull, M.S., 2015. Nanotechnology in the real world: Redeveloping the nanomaterial consumer products inventory. Beilstein J Nanotechnol 6, 1769-1780.
Wen, H., Dan, M., Yang, Y., Lyu, J., Shao, A., Cheng, X., Chen, L., Xu, L., 2017. Acute toxicity and genotoxicity of silver nanoparticle in rats. PLoS One 12, e0185554.
Wiemann, M., Vennemann, A., Blaske, F., Sperling, M., Karst, U., 2017. Silver Nanoparticles in the Lung: Toxic Effects and Focal Accumulation of Silver in Remote Organs. Nanomaterials (Basel) 7, 441.
Wu, S.C., Horng, J.L., Liu, S.T., Hwang, P.P., Wen, Z.H., Lin, C.S., Lin, L.Y., 2010. Ammonium-dependent sodium uptake in mitochondrion-rich cells of medaka (Oryzias latipes) larvae. Am J Physiol Cell Physiol 298, C237-250.
Wu, Y.N., Yang, L.X., Shi, X.Y., Li, I.C., Biazik, J.M., Ratinac, K.R., Chen, D.H., Thordarson, P., Shieh, D.B., Braet, F., 2011. The selective growth inhibition of oral cancer by iron core-gold shell nanoparticles through mitochondria-mediated autophagy. Biomaterials 32, 4565-4573.
Wu, Y., Zhou, Q., Li, H., Liu, W., Wang, T., Jiang, G., 2010. Effects of silver nanoparticles on the development and histopathology biomarkers of Japanese medaka (Oryzias latipes) using the partial-life test. Aquat Toxicol 100, 160-167.
Xin, Q., Rotchell, J.M., Cheng, J., Yi, J., Zhang, Q., 2015. Silver nanoparticles affect the neural development of zebrafish embryos. J Appl Toxicol 35, 1481-1492.
Xu, J., Zhang, R., Zhang, T., Zhao, G., Huang, Y., Wang, H., Liu, J.X., 2017. Copper impairs zebrafish swimbladder development by down-regulating Wnt signaling. Aquatic toxicology 192, 155-164.
Yan, J.J., Hwang, P.P., 2019. Novel discoveries in acid-base regulation and osmoregulation: A review of selected hormonal actions in zebrafish and medaka. Gen Comp Endocrinol 277, 20-29.
Yen, H.J., Horng, J.L., Yu, C.H., Fang, C.Y., Yeh, Y.H., Lin, L.Y., 2019. Toxic effects of silver and copper nanoparticles on lateral-line hair cells of zebrafish embryos. Aquat Toxicol 215, 105273.
Yoo, M.H., Rah, Y.C., Choi, J., Park, S., Park, H.C., Oh, K.H., Lee, S.H., Kwon, S.Y., 2016. Embryotoxicity and hair cell toxicity of silver nanoparticles in zebrafish embryos. Int J Pediatr Otorhinolaryngol 83, 168-174.
Yoon, K.Y., Hoon Byeon, J., Park, J.H., Hwang, J., 2007. Susceptibility constants of Escherichia coli and Bacillus subtilis to silver and copper nanoparticles. Sci Total Environ 373, 572-575.
Zapor, L. 2016. Effects of silver nanoparticles of different sizes on cytotoxicity and oxygen metabolism disorders in both reproductive and respiratory system cells. Arch Environ Prot 42, 32-47.
Zhang, Y., Ding, Z., Zhao, G., Zhang, T., Xu, Q., Cui, B., Liu, J.X., 2018. Transcriptional responses and mechanisms of copper nanoparticle toxicology on zebrafish embryos. J Hazard Mater 344, 1057-1068.
Zimmer, A.M., Wright, P.A., Wood, C.M., 2017. Ammonia and urea handling by early life stages of fishes. J Exp Biol 220, 3843-3855.

下載圖示
QR CODE