簡易檢索 / 詳目顯示

研究生: 蕭介孟
Hsiao Chieh Meng
論文名稱: 奈米聚苯胺在二氧化碳捕獲上之研究
Nanostructured Polyaniline for Carbon Dioxide Capture
指導教授: 陳家俊
Chen, ChiaChun
陳貴賢
Chen, Kuei-Hsien
林麗瓊
Chen, Li-Chyong
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 63
中文關鍵詞: 二氧化碳捕獲高分子聚苯胺碳布
英文關鍵詞: carbon dioxide capture, polymer, polyaniline, carbon cloth
論文種類: 學術論文
相關次數: 點閱:199下載:12
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要探討奈米結構的聚苯胺(nanostructured polyaniline)在二氧化碳捕獲(carbon dioxide capture)的應用,發現相較於其他已知的材料如聚乙烯亞胺polyethylenimine (PEI)、乙醇胺monoethanolamine (MEA)等,具有可降低因升溫脫附CO2所需的能量消耗,且容易合成、化學穩定性佳等優點。
    研究中合成聚苯胺的方式主要分為三部份:(1) 化學方式合成奈米聚苯胺、(2)化學方式合成不同分子量的聚苯胺及(3)電化學方式將聚苯胺成長於碳布。並利用傅立葉轉換紅外線光譜儀(FTIR)以及穿透式電子顯微鏡儀(TEM),分析聚苯胺的特性與結構鑑定。另使用熱重分析儀(TGA)來量測聚苯胺在二氧化碳的吸附/脫附效率與穩定性的評估。其結果利用電化學方式合成所製備的聚苯胺線/碳布在1大氣壓、30OC吸附、70OC脫附的條件下具有較佳的二氧化碳捕獲效率,29.4 mg(CO2)/g(PANI)。
    最後,再進一步探討在含水氣的情況下捕獲二氧化碳,發現因水氣的幫助其二氧化碳捕獲效率更提升至54.5 mg(CO2)/g(PANI)。經20次連續二氧化碳吸附/脫附後,仍幾乎保有第一次吸附/脫附二氧化碳的捕獲量的93.2%,顯示了此種吸附劑具有高度的循環再現性。

    The research was mainly investigated on the synthesis of nanostructured polyaniline and application on carbon dioxide capture. Due to lower CO2 desorption temperature, Polyaniline possess lower energy requirement and better cycle performance than other materials, such as monoethanolamine (MEA), polyethylenimine (PEI).
    The synthesis of nanostructured polyaniline in this work was divided into three parts: (1) different molecular weight (2) different morphologies (3) polyaniline deposited on carbon cloth by electrochemical polymerization. Those polyaniline were characterized using Fourier transform infrared spectroscopy (FTIR), and Transmission electron microscopy (TEM). All the experiments including the efficiency and cycle performance of CO2 capture were carried out by Thermogravimetric Analyzer (TGA). The results indicated polyaniline nanowires deposited on carbon cloth showed the best CO2 capture capacity, 29.4 mg(CO2)/g(PANI).
    Finally, the capture capacity of polyaniline was further increasing to 54.5 mg(CO2)/g(PANI) under moisture. After 20 adsorption/desorption cycles, the capacity still mostly maintain 93.2% compared to the initial data, which indicates that this adsorbent has a high degree of recyclability.

    封面 致謝 I 摘要 II Abstract IIIII 總目錄 IIV 圖目錄 VIII 表目錄 1 第一章 緒論 2 1-1前言 2 1-2 關於現今二氧化碳捕獲 7 第二章 理論基礎與文獻回顧 8 2-1 二氧化碳的捕獲 8 2-1-1 二氧化碳捕獲之路徑 9 2-1-2 二氧化碳捕獲之技術 11 2-2 含氮官能基捕獲機制 13 2-3 研究動機 14 第三章 實驗步驟與儀器 16 3-1 實驗藥品與材料 16 3-2 實驗儀器 17 3-2-1 穿透式電子顯微鏡 (Transmission Electron Microscopy; TEM) 17 3-2-2 場校發射式掃描電子顯微鏡 (Field-Emission Scanning Electron Microscope, FE-SEM) 19 3-2-3 傅立葉轉換紅外線光譜儀 (Fourier Transform Infrared Spectroscopy; FTIR) 21 3-2-4 熱重分析儀 (Thermogravimetric Analyzer, TGA) 22 3-2-5 恆電位分析儀(Autolab potentiostats) 23 3-3 實驗流程與條件 25 3-3-1 PANI不同奈米形貌製備 25 3-3-2 PANI不同分子量之製備 27 3-3-3 PANI奈米複合材料製備 29 第四章 實驗結果與討論 30 4-1 二氧化碳捕獲效率量量測 30 4-2 不同奈米形貌之PANI 34 4-2-1 不同奈米形貌PANI之TEM、SEM影像圖 35 4-2-2 不同奈米形貌PANI之FTIR量測 38 4-2-3 二氧化碳捕獲效率的測試 39 4-2-4 含水情況下測試二氧化碳捕獲效率 41 4-3 不同分子量之PANI 42 4-3-1 黏度計鑑定分子量 43 4-3-2 不同分子量PANI之FTIR量測 44 4-3-3 二氧化碳捕獲效率的測試 46 4-3-4 含水情況下測試二氧化碳捕獲效率 47 4-4 將奈米結構之PANI成長於碳布之上 49 4-4-1 製備不同量之奈米聚苯胺於碳布之上 49 4-4-2 不同厚度之奈米聚苯胺成長於碳布上之SEM影像圖 53 4-4-3 奈米聚苯胺成長於碳布上之FTIR量測 55 4-4-4 二氧化碳捕獲效率的測試 56 4-4-5 含水情況下測試二氧化碳捕獲效率 58 第五章 結論 59 參考文獻 60

    1. http://www.prb.org/Publications/Datasheets/2008/2008wpds.aspx
    2. Pevida C.; Drage T. C.; Snape C.E., Carbon, 2008, 46, 1464-1474
    3. Thambimuthu K.; Davison J.; Gupta M., "IPCC workshop on carbon dioxide capture and storage"
    4. Song C., Catalysis Today, 2006, 115, 2–32
    5. Carapellucci R.; Milazzo A, Proceedings of the Institution of Mechanical Engineers Part A: Journal of Power and Energy, 2003, 217, 505–517
    6. Figueroa, J.D.; Fout T.; Plasynski S.; Mcilveried H.; Srivastava R. D., Int. J. Green. Gas Control, 2008, 2, 9-20
    7. CRS Report for Congress, "Capturing CO2 from Coal-fired Power Plants: Challenges for a Comprehensive Strategy"
    8. Yang H.; Xu Z.; Fan M.; Gupta R.; Slimane R. B.; Bland A. E.; Wright I., Journal of Environmental Sciences, 2008, 20, 14-27
    9. Jose D. F.; Timothy F.; Sean P.; Howard M., international journal of greenhouse gas control, 2008, 9-20
    10. Idem R.; Wilson M.; Tontiwachwuthikul P.; Chakma A.; Veawab A.; Aroonwilas A.; Gelowitz D., Engineering Chemistry Research, 2006, 458, 2414–2420
    11. Toshiyuki Y.; Hideaki Y.; Takashi T., J. Mater. Chem., 2004, 14, 951-957
    12. Yue M. B.; Chun Y.; Cao Y.; Dong X.; Zhu H. J., Funct. Mater., 2006, 16, 1717–1722
    13. Kato M.; Nakagawa K.; Essaki K.; Maezawa Y.; Takeda S.; Kogo R.; Hagiwara Y., International Journal of Applied Ceramic Technology, 2005, 2, 467–475
    14. Walton K. S.; Abney M. B.; LeVan M. D., Microporous Mesoporous Mater., 2006, 91, 78-84
    15. Gray M. L.; Soong Y.; Champagne K. J.; Pennline H.; Baltrus J. P.; Stevens R. W.; Khatri R. J.; Chuang S. S. C.; Filburn T., Fuel Processing Technology, 2005 , 86, 1449–1455
    16. Abanades J. C.; Rubin E. S.; Anthony E. J., Industrial and Engineering Chemistry Research, 2004, 43, 3462–3466
    17. Zhang X.; Zhang C. F.; Liu Y., Ind. Eng. Chem. Res., 2002, 41, 1135-1141
    18. Idem R.; Wilson M., Tontiwachwuthikul P.; Chakma A.; Veawab A., Aroonwilas A.; Gelowitz D., Ind. Eng. Chem. Res., 2006, 45, 2414–2420
    19. Knudsen J. N.; Jensen J. N.; Vilhelmsen P. J.; Biede O., Energy Proc., 2009, 1, 783–790
    20. Feng B.; An H.; Tan E., Energy Fuels, 2007, 21, 426
    21. Wang Y.; Lin S.; Suzuki Y., Energy Fuels, 2007, 21, 3317
    22. Yong Z.; Mata V.; Rodrigues A. E., Sep. Purif. Rev., 2002, 26, 195
    23. Sayari A.; Belmabkhout Y., J. Am. Chem. Soc., 2010, 132, 6312–6314
    24. Yeh J. T.; Resnik K. P.; Rygle K.; Pennline H. W., Fuel Processing Technology, 2005, 86, 1533–1546
    25. Wang J.; Long D.; Zhou H.; Chen Q.; Liu X.; Ling L., Energy Environ. Sci., 2012, 5, 5742–5749
    26. Huang J.; Kaner R.B., Angew. Chem. Int. Ed., 2004, 43, 5817 –5821
    27. Patra S.; Munichandraiah N., Journal of Applied Polymer Science, 2007, 106, 1160-1168
    28. Prasannan A.; Truong T. B.; Hong P. D.; Somanathan N.; Shown I.; Imae T., Langmuir, 2011, 27, 766–773
    29. Horng Y. Y.; Hsu Y. K.; Ganguly A.; Chen C. C.; Chen L. C.; Chen K.H., Electrochem. Commun., 2009, 11, 850-858
    30. Adams P. N.; Laughlin P. J.; Monkman A. P., Polymer, 1996, 37, 3411-3417
    31. Adams P. N.; Monkman A.P., Synthetic Metals, 1997, 87, 165–169
    32. Adams P. N.; Laughlin P. J.; Monkman A.P., Synthetic Metals, 1996, 157-160
    33. Sengupta P. P.; Kar P.; Adhikari B., Reactive & Functional Polymers, 2008, 68, 1103–1112

    下載圖示
    QR CODE