簡易檢索 / 詳目顯示

研究生: 李揚德
論文名稱: 超導磁導儀的開發及利用磁性奈米粒子標靶肝腫瘤進行活體檢測的研究
指導教授: 洪姮娥
Horng, Herng-Er
謝振傑
Chieh, Jen-Jie
學位類別: 碩士
Master
系所名稱: 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 49
中文關鍵詞: 磁性奈米粒子超導磁導儀
論文種類: 學術論文
相關次數: 點閱:186下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究提出一個新穎檢測肝癌腫瘤的活體檢驗方法,利用批覆Alphafetaprotein(AFP)抗體的磁性奈米粒子(Magnetic nanoparticles,MNPs),注射於癌鼠進行標靶實驗,並開發掃描式超導磁導儀(Scanning superconducting-quantum-interference device, SSB)檢驗MNPS的交流磁化率。本研究除了用SSB對注射MNPs試劑的癌鼠進行檢測,也利用MRI與切片染色方法進行驗證,SSB、MRI與切片染色結果的一致性證實了SSB的可行性與MNPs標靶於腫瘤位置的專一性。因此未來病人可注射批覆AFP抗體的磁性奈米粒子試劑後用SSB進行活體篩檢,如需進一步精確斷層掃描則再花較多的MRI診斷費,減少民眾與健保的負擔。許多醫學影像技術如MRI、X-ray,雖具有高解析的斷層影像,但因造價維護費用高且需另有良好的屏蔽環境,因此往往僅大型醫療機構能採購。此外,為增加對腫瘤辨識的靈敏度與專一性,以批覆生物探針的奈米粒子已為主流。

摘要……………………………………………………………………… I 目錄…………………………………………………………………… II 圖表目錄……………………………………………………………… III 第一章 緒論………………………………………………………… 1 第二章 超導生醫磁導儀(SSB)的開發………………………… 3 2.1 系統的理論設計…………………………………………… 3 2.2 實驗系統的建立…………………………………………… 8 2.3 SSB系統的性能分析……………………………………… 13 第三章 磁性奈米粒子標靶肝腫瘤的動物實驗………………16 3.1 動物實驗的規劃…………………………………………… 16 3.2 SSB的檢測………………………………………………… 23 3.3 核磁共振造影(MRI)的檢測……………………………… 24 3.4 組織切片染色的檢測……………………………………… 25 第四章 結果與討論………………………………………………… 26 4.1 SSB的活體實驗檢測結果………………………………… 26 4.2 MRI與切片染色的檢測…………………………………… 29 第五章 結論………………………………………………………………………… 36 參考文獻……………………………………………………………………………………… 37 致謝……………………………………………………………………………………………… 41

[1]. Hong CY, Wu CC, Yang SY, et al. Magnetic susceptibility reduc-tion method for magnetically labeled immunoassay. Appl Phys Lett.;88:212512-1 ( 2006)
[2]. Huang KW, Yang SY, Hong YW, et al. Feasibility studies for assaying alpha-fetoprotein using antibody- activated magnetic nanoparticles. Int J Nanomed.;7:1991 (2012)
[3]. Rosensweig RE. Heating magnetic fluid with alternating magnetic field. J Magn Magn Mater. ;252:370(2002)
[4]. Tseng HY, Lee GB, Lee CY, et al. Localised heating of tumours utiliz¬ing injectable magnetic nanoparticles for hyperthermia cancer therapy. IET Nanobiotechnol.;3(2):46(2009)
[5]. Duguet E, Vasseur S, Mornet S, Devoisselle JM. Magnetic nanopar¬ticles and their applications in medicine. Nanomedicine.;1(2): 157(2006)
[6]. Prijic S, Sersa G. Magnetic nanoparticles as targeted delivery systems in oncology. Radiol Oncol.;45(1):1(2011)
[7]. Nair BG, Nagaoka Y, Morimoto H, et al. Aptamer conjugated mag¬netic nanoparticles as nanosurgeons. Nanotechnology.;21(45): 455102-1 (2010)
[8]. Moritz FK, Umar M, Raymond SK, et al. A multimodal nanoparticle for preoperative magnetic delineation resonance imaging and intraoperative optical brain tumor. Cancer Res.;63:8122(2003)
[9]. Watkin KL, McDonald MA. Multi-moddal contrast agents:a first step. Academic Radiology 9:S285 (2002)
[10]. Chieh JJ, Hong CY. Non-invasive and high-sensitivity scanning detection of magnetic nanoparticles in animals using high-Tc scanning superconducting-quantum-interference-device biosusceptometry. Rev Sci Instrum.;82(8):084301-1(2011)
[11]. Martin Nikolo.A guide to alternating current susceptibility measurements and alternating current susceptometer design.American Association of Physics Teachers 57-65
[12]. Chieh JJ, Tseng WK, Horng HE, et al. In-vivo and real-time measure¬ment of magnetic-nanoparticles distribution in animals by scanning SQUID biosusceptometry for biomedicine study. IEEE IEEE Trans Biomed Eng.;58(10):2719(2011)
[13]. Tseng WK, Chieh JJ, Yang SY, et al. In-vivo and fast examination of iron concentration of magnetic nano-particles in an animal torso via scanning SQUID Biosusceptometry. IEEE Trans Appl Supercond.;21(3):2250–2253(2011)
[14]. Tadayuki Kondo1 and Hideo Itozaki Normal conducting transfer coil for SQUID NDE SUPERCONDUCTOR SCIENCE AND TECHNOLOGY,17,459(2004)
[15]. Y. S. Greenberg, “Application of superconducting quantum interferencedevices to nuclear magnetic resonance,” Rev. Mod. Phys., vol. 70:175(2002)
[16]. R. McDermott, A. H. Trabesinger, M. Mück, E. L. Haln, A. Pines, and J. Clarke, “Liquid-state NMR and scalar couplings in microtesla magnetic fields ,” Science, vol. 295: 2247 (2002)
[17]. Y. Zhang, L. Qiu, H. Krause, S. Hartiwig, M. Burghoff, and L. Trahms, “Liquid state nuclear magnetic resonance at low fields using a nitrogen cooled superconducting quantum interference device,” Appl. Phys. Lett., 90:182503, (2007)
[18]. K. Schlenga, R. McDermott, J. Clarke, R. E. de Souza, A. Wong-Foy, and A. Pines, “Low-field magnetic resonance imaging with a high- Tc dc superconducting quantum interference device,” Appl. Phys. Lett., 75:3695, (1999)
[19]. M. Burghoff, S. Hartwig, L. Trahms, and J. Bernarding, “Nuclear magnetic resonance in the nanoTesla range,” App. Phys. Lett., 87:054103, 2005
[20]. L. Qiu, Y. Zhang, H. J. Krause, A. H. Braginski, M. Burghoff, and L. Trahms, “Nuclear magnetic resonance in the earth’s magnetic field using a nitrogen-cooled superconducting quantum interference device,” APPLIED PHYSICS LETTERS ,91:072505(2007)
[21]. H. C. Yang, S. H. Liao, H. E. Horng, S. L. Kuo, H. H. Chen, and
S. Y. Yang, “Enhancement of nuclear magnetic resonance in microtesla
magnetic field with prepolarization field detected with high-Tc superconducting quantum interference device,” Appl. Phys. Lett., 88:252505( 2006)
[22]. Hill DA Further studies of human whole-body radiofrequency absorptionrates. Bioelectromagnetics 6: 33(1985)
[23]. Horng HE, Yang SY, Huang YW, Jiang WQ, Hong CY, et al. Nanomagnetic Particles for SQUID-based Magnetically Labeled Immunoassay.IEEE Trans Appl Supercond. 15: 668(2005)
[24]. Yang SY, Jian ZF, Horng HE, Hong CY, Yang HC, et al. Dualimmobilization and magnetic manipulation of magnetic nanoparticles. J MagnMagn Mater,.320: 2688 (2008)
[25]. Chieh JJ, Hong CY Non-invasive and High-sensitivity scanning detection of magnetic nanoparticles in animals using high-Tc scanning superconductingquantum-interference-device biosusceptometry. Rev Sci Instrum .82: 084301-1 (2011)
[26]. Yang SY, Sun JS, Liu CH, et al. Ex vivo magnetofection with magnetic nanoparticles: a novel platform for nonviral tissue engineering. Artif Organs.;32(3):195(2008)
[27]. Wang J, Chen Y, Chen B, Ding J, Xia G, et al. Pharmacokinetic parameters and tissue distribution of magnetic Fe3O4 nanoparticles in mice. International Journal of Nanomedicine5:861(2010)
[28]. Tsuchiya K, Nitta N, Sonoda A, Seko AN, Ohta S, et al. Histological study of the biodynamics of iron oxide nanoparticles with different diameters.Int J Nanomed, 6:1587(2011)
[29]. Huang KW, Yang SY, Hong YW, Chieh JJ, Yang CC, et al. Feasibility studies for assaying alpha-fetoprotein using antibody- activated magnetic nanoparticles. Int. J. Nanomed.7: 1991(2012)
[30]. Yang SY, Jian ZF, Horng HE, et al. Dual immobilization and mag¬netic manipulation of magnetic nanoparticles. J Magn Magn Mater.;320(21):2688( 2008)

無法下載圖示 本全文未授權公開
QR CODE