簡易檢索 / 詳目顯示

研究生: 謝東霖
Hsieh, Tung-Lin
論文名稱: 探討科學探究與實作課程中建模教學對高中學生論證表現的影響
Investigating the Influences of Modeling-based Instruction on Students' Argumentation in Science Inquiry and Practice Course
指導教授: 邱美虹
Chiu, Mei-Hung
口試委員: 邱美虹
Chiu, Mei-Hung
周金城
Chou, Chin-Cheng
林靜雯
Lin, Jing-Wen
口試日期: 2022/07/26
學位類別: 碩士
Master
系所名稱: 科學教育研究所
Graduate Institute of Science Education
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 118
中文關鍵詞: 論證建模建模教學
英文關鍵詞: Argumentation, Modeling, Modeling instruction
研究方法: 準實驗設計法
DOI URL: http://doi.org/10.6345/NTNU202201773
論文種類: 學術論文
相關次數: 點閱:113下載:25
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 「論證與建模」是臺灣在民國108年正式實施的十二年國民基本教育(簡稱108課綱)中,探究與實作課程裡所提到的探究學習內容。本研究擬透過實徵研究達到以下三個研究目的: (1) 探討不同教學活動下學生的論證表現;(2) 探討不同教學活動下學生模型功能與建模歷程表現;(3) 探討教師和學生在課堂中對話上論證使用的情形。本研究利用蠟燭燃燒實驗,透過建模歷程引導,讓學生在不同現象中修正呈現模型,最終透過課堂任務將模型應用在TAP論證任務中,訓練學生「論證與建模」能力。本研究結果顯示:(1)在論證表現上,兩組學生後測表現均優於前測,但兩組學生在後測表現上未達顯著差異。在論證表現的四個向度中,實驗組在「論據種類分辨」表現優於對照組;兩組學生在TAP任務上測驗分數未達顯著差異,但TAP任務的四個向度上,在「支持」向度實驗組表現優於對照組。(2)在模型功能與建模歷程表現上,兩組學生在前後測表現與兩組後測表現上未均達顯著差異。不過在模型功能與建模歷程的四個向度中,在「建模歷程」向度上實驗組表現優於對照組。(3)從課堂對話分析中可發現,在建模教學的課堂中確實能在不同階段展現學生「處理數據、爭論」等技巧,若想訓練學生反對、產生替代理論與反駁的技巧,有賴教師在課程設計上的加入論點的討論,以及增加師生對話的提問。研究結果可以提供高中進行探究與實作課程時具體的參考方向。

    " Argumentation and modeling" is the inquiry learning content mentioned in the 12-year Basic Education Curricula Guidelines in Taiwan in 2019 . The purpose of this research is as follows: (1) Investigating the performance of students' argumentation in different instruction, (2) Investigating students’ performance on understanding of model function and modeling process in different instruction, and (3) Investigating the situation of teachers and students' use of argumentation in classroom dialogues. This study uses a candle burning experiment, embedded with the modeling process, to allow students to revise their model in different phenomena, and finally apply the model to the TAP Argumentation tasks. The results of this study show: (1) In the performance of argumentation , the post-test performance of the two groups of students was better than the pre-test, but there was no significant difference in the post-test performance. However, in the four items of argumentation performance, the experimental group performed better than the control group in the item of "distinguishing the types of arguments"; In the TAP task, there was no significant difference in test scores between the two groups of students, but in the four items of the TAP task, the experimental group performed better than the control group in the "support" item. (2) In the understanding of the functions of models and modeling process test, there was no significant difference between the two groups of students in the pre- and post-test performance and the two groups' post-test performance. However, the experimental group performed better than the control group in the "modeling process" item.
    (3) It can be found from the analysis of classroom dialogues that students can indeed demonstrate skills such as " dealing with evidence and arguing" at different stages in the classroom of modeling teaching. Teachers have responsibility to cultivate students to develop for and against arguments, produce alternative theories and refutations. In the course design, the discussion of the arguments can be included in school practice to increase the dialogue between teachers and students.

    第壹章 緒論 1 第一節 研究背景與動機 1 第二節 研究目的與問題 4 第三節 研究的重要性 4 第四節 研究範圍與限制 5 第五節 名詞釋義 5 第貳章 文獻探討 7 第一節 論證與論證表現 7 第二節 科學模型與建模 9 第三節 論證與建模之關聯性 14 第四節 蠟燭燃燒使水位上升相關研究 16 第參章 研究方法 19 第一節 研究設計 19 第二節 研究對象 23 第三節 研究工具 25 第四節 研究流程 32 第五節 資料分析 33 第肆章 研究結果與討論 35 第一節 學生的論證表現 35 第二節 學生模型功能與建模歷程表現 40 第三節 課堂論證使用情形 44 第伍章 討論、建議與未來展望 75 第一節 研究討論與結論 75 第二節 研究發現與建議 80 第三節 未來展望 81 參考文獻 83 附錄一:對照組課堂學習單 89 附錄二:實驗組課堂學習單 96 附錄三:科學論證測驗表單版本 106 附錄四:建模能力問卷表單版本 113 附錄五:TAP任務表單版本 116

    中文文獻
    1. 邱美虹(2008)。模型與建模能力之理論架構。科學教育月刊,306,2-9。https://dx.doi.org/ 10.6216/SEM.200803_(306).0001
    2. 邱美虹。(2016)。科學模型與建模:科學模型、科學建模與建模能力。臺灣化學教育,11。民111年6月23日,取自:http://chemed.chemistry.org.tw/?p=13898
    3. 邱美虹、曾茂仁(2018)。科學建模本位的探究教學之教材設計—以化學電池為例。臺灣化學教育,28。民111年6月23日,取自:http://chemed.chemistry.org.tw/?p=31481
    4. 邱美虹、劉俊庚(2008)。從科學學習的觀點探討模型與建模能力。科學教育月刊,314,2-20。https://dx.doi.org/10.6216/SEM.200811_(314).0001
    5. 林志能、洪振方(2008)。 論證模式分析及其評量要素。科學教育月刊,312, 2-18。https://dx.doi.org/10.6216/SEM.200809_(312).0001
    6. 教育部(1998)。九年一貫課程綱要。臺北市。教育部。
    7. 教育部(2003)。科學教育白皮書。臺北市。教育部。
    8. 教育部(2003)。普通高級中學課程綱要。臺北市。教育部。
    9. 教育部(2014)。十二年國民基本教育課程綱要總綱。臺北市。教育部。
    10. 教育部(2018)。十二年國民基本教育課程綱要國民中小學暨普通型高級中等學校自然科學領域。臺北市。教育部。
    11. 許綺婷(2014)。高中論證教學設計──以蠟燭燃燒水面上升為例。臺灣化學教育,1。民111年6月23日,取自:http://chemed.chemistry.org.tw/?p=1036
    12. 張志康(2008)。從概念改變理論探究建模教學對學生力學心智模式與建模能力之影響(未出版之碩士論文)。國立臺灣師範大學,臺北市。
    13. 張志康、邱美虹(2009)。建模能力分析指標的發展與運用—以電化學為例。科學教育學刊,17(4),319-342。https://dx.doi.org/10.6173/CJSE.2009.1704.04
    14. 張志康、林靜雯、邱美虹(2009)。從方法論向度探討中學生對模型與建模歷程之觀點。科學教育研究與發展季刊,53,24-42。
    15. 陳世文、顏慶祥(2021)。[探究與實作] 課程在普通高中自然科學領域實施概況之調查研究。課程與教學,24(4),135-166。https://dx.doi.org/ 10.6384/CIQ.202110_24(4).0006
    16. 曾茂仁(2016)。探討建模本位探究教學於化學電池的學習成效與建模能力(未出版之碩士論文)。國立臺灣師範大學,臺北市。
    17. 廖婉雯(2019)。國小綜合活動領域自編教材之現況問題及檢核規準與方式之探討。教育理論與實踐學刊,40,107-132。https://dx.doi.org/ 10.7038/JETP.201912_(40).0005

    英文文獻
    1. Berland, L. K., & Reiser, B. J. (2009). Making sense of argumentation and explanation. Science education, 93(1), 26-55. https://doi.org/10.1002/sce.20286
    2. Boettcher, F., & Meisert, A. (2011). Argumentation in science education: A model-based framework. Science & education, 20(2), 103-140. https://doi.org/10.1007/s11191-010-9304-5
    3. Bricker, L., & Bell, P. (2008). Conceptualizations of argumentation from science studies and the learning sciences and their implications for the practices of science education. Science Education, 92, 473–498. https://doi.org/10.1002/sce.20278
    4. Bulgren, J., Ellis, J., Marquis, J. (2014) The use and effectiveness of an argumentation and evaluation intervention in science classes. Journal of Science Education and Technology, 23(1), 82-97. https://doi.org/10.1007/s10956-013-9452-x
    5. Campbell, T., Oh, P. S., Maughn, M., Kiriazis, N., & Zuwallack, R. (2015). A review of modeling pedagogies: Pedagogical functions, discursive acts, and technology in modeling instruction. Eurasia Journal of Mathematics, Science and Technology Education, 11(1), 159-176. https://doi.org/10.12973/eurasia.2015.1314a
    6. Chiu, M. H. (2016). Developing modeling theory and indicators to design modeling-based inquiry lessons – An investigation on scientific conceptual change and modeling abilities. Technical report to the Ministry of Science and Technology, Taipei, Taiwan.
    7. Chiu, M. H., & Lin, J. W. (2019). Modeling competence in science education. Disciplinary and Interdisciplinary Science Education Research, 1(1), 1-11. https://doi.org/10.1186/s43031-019-0012-y
    8. Clement, J. (2000). Model based learning as a key research area for science education. International Journal of Science Education, 22(9), 1041-1053. https://doi.org/10.1080/095006900416901
    9. Driver, R., Newton, P., & Osborne, J. (2000). Establishing the norms of scientific argumentation in classrooms. Science education, 84(3), 287-312. https://doi.org/10.1002/(SICI)1098-237X(200005)84:3<287::AID-SCE1>3.0.CO;2-A
    10. Frey, B. B., Ellis, J. D., Bulgreen, J. A., Hare, J. C., & Ault, M. (2015). Development of a Test of Scientific Argumentation. Electronic Journal of Science Education, 19(4).
    11. Gilbert, J. K. (2007). Visualization: A metacognitive skill in science and science education. Visualization in Science Education , pp.9-27. Netherlands: Springer. https://doi.org/10.1007/1-4020-3613-2_2
    12. Gilbert, J. K., & Boulter, C. (1998). Learning science through models and modeling. In B. Fraser & K. Tobin ,Eds., International handbook of science education, pp.53-66. Dordrecht, the Netherlands: Kluwer Academic
    13. Gilbert, J. K., & Justi, R. (2016a). Approaches to modelling-based teaching. In Modelling-based teaching in science education . In Modelling-based Teaching in Science Education. pp. 57-80. Springer, Cham.
    14. Gilbert, J. K., & Justi, R. (2016b). The Role of Argumentation in Modelling-Based Teaching. In Modelling-based Teaching in Science Education , pp.97-120. Springer, Cham.
    15. Grosslight, L., Unger, C., Jay, E., & Smith, C. L. (1991). Understanding models and their use in science: Conceptions of middle and high school students and experts. Journal of Research in Science teaching, 28(9), 799-822. https://doi.org/10.1002/tea.3660280907
    16. Halloun, I. (1996). Schematic Modeling for Meaningful Learning of Physics. Journal of Research in Science Teaching, 33(9), 1019-1041. https://doi.org/10.1002/(SICI)1098-2736(199611)33:9<1019::AID-TEA4>3.0.CO;2-
    17. Hogan, K., & Maglienti, M. (2001). Comparing the epistemological underpinnings of students' and scientists' reasoning about conclusions. Journal of Research in Science Teaching, 38(6), 663-687. https://doi.org/10.1002/tea.1025
    18. Huang, W. C. (2013) . 2013 Problem 10 : Water Rise the rising water after covering a burning candle. Solutions of IYPT Problems, 10, pp.56-60.
    19. Jiménez-Aleixandre, M. P., & Erduran, S. (2007). Argumentation in science education: An overview. Argumentation in science education, pp.3-27.
    20. Jong, J. P., Chiu, M. H., & Chung, S. L. (2015). The Use of Modeling‐Based Text to Improve Students' Modeling Competencies. Science education, 99(5), 986-1018. https://doi.org/10.1002/sce.21164
    21. Justi, R. (2015). Relações entre argumentação e modelagem no contexto da ciência e do ensino de ciências. Ensaio Pesquisa em Educação em Ciências (Belo Horizonte), 17, 31-48.
    22. Krajcik, J., & Merritt, J. (2012). Engaging Students in Scientific Practices: What does constructing and revising models look like in the science classroom? The Science Teacher, 79(3), 38-41. https://0-www.proquest.com.opac.lib.ntnu.edu.tw/scholarly-journals/engaging-students-scientific-practices-what-does/docview/1000411241/se-2
    23. Kuhn, D. (2010). Teaching and learning science as argument. Science Education, 94(5), 810-824. https://doi.org/10.1002/sce.20395
    24. McNeill, K. L., & Krajcik, J. (2007). Middle school students’ use of appropriate and inappropriate evidence in writing scientific explanations. Thinking with data, pp. 233-265.
    25. Mendonça, P. C. C., & Justi, R. (2013). The relationships between modelling and argumentation from the perspective of the model of modelling diagram. International journal of science education, 35(14), 2407-2434. https://doi.org/10.1080/09500693.2013.811615
    26. Osborne, J., Erduran, S., & Simon, S. (2004). Enhancing the quality of argumentation in school science. Journal of research in science teaching, 41(10), 994-1020. https://doi.org/10.1002/tea.20035
    27. Passmore, C. M., & Svoboda, J. (2012). Exploring opportunities for argumentation in modelling classrooms. International Journal of Science Education, 34(10), 1535-1554. https://doi.org/10.1080/09500693.2011.577842
    28. Toulmin, S. (1958). The uses of argument. Cambridge, MA: Cambridge University Press.
    29. Saari, H., & Viiri, J. (2003). A research‐based teaching sequence for teaching the concept of modelling to seventh‐grade students. International Journal of Science Education, 25(11), 1333-1352. https://doi.org/10.1080/0950069032000052081
    30. Sins, P. H., Savelsbergh, E. R., & van Joolingen, W. R. (2005). The Difficult Process of Scientific Modelling: An analysis of novices' reasoning during computer‐based modelling. International Journal of Science Education, 27(14), 1695-1721. https://doi.org/10.1080/09500690500206408
    31. Vera, F., Rivera, R., & Núñez, C. (2011). Burning a candle in a vessel, a simple experiment with a long history. Science & Education, 20(9), 881-893. https://doi.org/10.1007/s11191-011-9337-4
    32. Vosniadou, S. (1994). Capturing and modeling the process of conceptual change. Learning and instruction, 4(1), 45-69. https://doi.org/10.1016/0959-4752(94)90018-3

    下載圖示
    QR CODE