簡易檢索 / 詳目顯示

研究生: 張簡旭芳
Chang Chien, Hsu-Fang
論文名稱: 走跑身體加速度與行進速度之關係
Relationships between Body Acceleration and Velocity during Different Gait Pattern
指導教授: 相子元
Shiang, Tzyy-Yuang
學位類別: 碩士
Master
系所名稱: 運動競技學系
Department of Athletic Performance
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 36
中文關鍵詞: 轉換速度心率加速規
英文關鍵詞: Preffered Transition Speed, Heart Rate, Accelerometer
DOI URL: https://doi.org/10.6345/NTNU202203678
論文種類: 學術論文
相關次數: 點閱:197下載:40
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

前言:國民運動人口數逐年增加,而運動的目的是為了促進健康,因此精準地測得身體活動量就變得很重要。近年來電子產業興盛及穿戴式技術純熟,加速規在準確度、體積與便利性都有大突破,目前已成為大眾記錄身體活動量的必需品。雖然加速規普遍應用在身體活動量計,但加速規的運算方式多樣化,到目前為止尚未有一標準。行進速度為運動強度指標,但身體加速度與行進速度之間的關係到目前為止也尚未明確。故本研究目的在探討(一) 身體加速度與行進速度、心跳儲備率 (HRR%) 之間關係為何。(二) 不同速度走跑,比較身體加速度運算方式何者為佳。方法:招募19名非運動選手的健康男性作為實驗參與者,測試過程中穿戴心率帶及三軸加速規,分別在不同速度下進行走路和跑步的實驗,每個速度各進行3分鐘,中間休息至恢復站立休息心率,每個試驗分別收取穩定心率時的一分鐘資料進行數據分析,加速度經不同運算方式處理後,分別與行進速度、心跳儲備率 (HRR%) 做相關分析。統計使用皮爾森績差相關,比較走路、跑步及整個走跑過程,身體加速度與行進速度、心跳儲備率 (HRR%) 之相關性。結果:在走路、跑步及整個走跑過程中,合加速度峰值與前後軸加速度MAD值皆與行進速度 (r=.829**、.514**、.836**; r=.833**、.637**、.780**)、HRR% (r=.771**、.517**、.856**; r= .837**、.651**、.787**) 呈高度相關。結論:身體合加速度峰值及前後軸加速度MAD值推估走路、跑步及整個走跑過程的運動強度是可行的,此結果可作為未來身體活動量計應用之基礎。

Introduction:The population engaged in exercise increases annually. One of the main reasons for exercising is for promoting overall health; therefore, the accuracy of measuring physical activity is critical. In recent years, the electronic industry has been booming and wearable technology is getting increasingly mature. The accelerometer has made a big breakthrough in accuracy, volume and convenience and is now a necessity for recording physical activity. Although accelerometers are commonly used in measuring physical activity, the algorithms are quite diverse and not yet standardized. The moving speed is an index of exercise intensity but the correlations between the physical acceleration and moving speed are not yet clear. Purpose: The purpose of this study is to examine: 1) the correlations between the physical acceleration, moving speed and heart rate reserve (HRR%); 2) a better algorithm for estimating physical acceleration at different walking and running speeds. Method: This study recruited 19 healthy males who were asked to wear a heart rate monitor and a tri-axis accelerometer to perform walking and running at different speeds. Each speed was tested for 3 minutes followed by a rest until the participants returned to their standing rest heart rate. A one-minute stable heart rate of each trial was gathered for data analysis. After being processed with different algorithms the acceleration values were analyzed with moving speeds and HRR% respectively. The Pearson product-moment correlation coefficient was used to examine the relationships between walking, running, the entire walking-running period, physical acceleration, moving speeds and HRR%. Result: In the walking, running, and the entire walking-running period, the peak values of resultant acceleration and the MAD values of anterior-posterior acceleration showed significant correlations with moving speeds (r=.829**、.514**、.836**; r=.833**、.637**、.780**) and HRR% (r=.771**、.517**、.856**; r= .837**、.651**、.787**). Conclusion: It is feasible to estimate the exercise intensity for walking, running and the entire walking-running period with the peak values of resultant acceleration and the MAD values of anterior-posterior acceleration. The results can be used as a foundation for the future application in measuring physical activity.

中文摘要 i 英文摘要 ii 目次 iv 表次 vi 圖次 vii 第壹章 緒論 1 第一節 研究背景 1 第二節 研究問題 4 第三節 研究目的 4 第四節 研究假設 5 第五節 研究範圍 5 第六節 研究限制 5 第七節 名詞操作定義 5 第八節 研究之重要性 6 第貳章 文獻探討 7 第一節 加速規推估身體活動量之運算方式 7 第二節 心跳儲備率、身體加速度分別與行進速度之關係 10 第三節 相關文獻探討總結 13 第參章 研究方法 14 第一節 實驗參與者 14 第二節 實驗設備 14 第三節 實驗步驟 15 第四節 實驗設計 16 第五節 資料處理 18 第六節 統計分析 19 第肆章 結果 20 第一節 不同動作型態,比較身體加速度之運算方式 21 第二節 身體加速度與行進速度、心跳儲備率之關係 23 第伍章 討論 25 第一節 身體加速度與行進速度、心跳儲備率之關係 25 第二節 不同動作型態,比較身體加速度之運算方式 26 第三節 結論與建議 28 引用文獻 29 附錄一 實驗參與者須知 34 附錄二 實驗參與者同意書 35 附錄三 實驗參與者基本資料表 36

侯彥竹、相子元 (2014) 。從2015年全球體適能調查探討未來趨勢。運動表現期刊,1(2),33-37。
相子元、石又、何金山 (2012)。感測科技於運動健康科學之應用。體育學報,45(1),1-12。
黃苹苹、王顯智 (2005)。心率變異度分析在運動之應用。大專體育,(77)63-69。
Aittasalo, M., Vähä-Ypyä, H., Vasankari, T., Husu, P., Jussila, A. M., & Sievänen, H. (2015). Mean amplitude deviation calculated from raw acceleration data: a novel method for classifying the intensity of adolescents’ physical activity irrespective of accelerometer brand. BMC Sports Science, Medicine and Rehabilitation, 7(1), 18.
Andrew, M. E., Shengqiao, L. I., Wactawski‐Wende, J., Dorn, J. P., Mnatsakanova, A., Charles, L. E., ... & Sharp, D. S. (2013). Adiposity, muscle, and physical activity: predictors of perturbations in heart rate variability. American Journal of Human Biology, 25(3), 370-377.
Bailey, M. J., & Ratcliffe, C. M. (1995). Reliability of physiological cost index measurements in walking normal subjects using steady-state, non-steady-state and post-exercise heart rate recording. Physiotherapy, 81(10), 618-623.
Bassett Jr, D. R. (2000). Validity and reliability issues in objective monitoring of physical activity. Research Quarterly for Exercise and Sport, 71(sup2), 30-36.
Biewener, A. A., Farley, C. T., Roberts, T. J. & Temaner, M. ( 2004). Muscle mechanical advantage of human walking and running : implications for energy cost. Journal of Applied Physiology. 97:2266-2274.
Boyd, L. J., Ball, K., & Aughey, R. J. (2011). The reliability of MinimaxX accelerometers for measuring physical activity in Australian football. International Journal of Sports Physiology and Performance, 6(3), 311-321.
Brage, S., Wedderkopp, N., Franks, P. W., Andersen, L. B., & Froberg, K. (2003). Reexamination of validity and reliability of the CSA monitor in walking and running. Medicine & Science in Sports & Exercise, 35(8), 1447-1454.
Butte, N. F., Ekelund, U., & Westerterp, K. R. (2012). Assessing physical activity using wearable monitors: measures of physical activity. Medicine & Science in Sports & Exercise, 44(1 Suppl 1), S5-12.
Caspersen, C. J., Powell, K. E., & Christenson, G. M. (1985). Physical activity, exercise, and physical fitness: definitions and distinctions for health-related research. Public Health Reports, 100(2), 126.
Cavagna, G. A., Thys, H., & Zamboni, A. (1976). The sources of external work in level walking and running. The Journal of Physiology, 262(3), 639.
Chan, C. B., Spangler, E., Valcour, J., & Tudor‐Locke, C. (2003). Cross‐sectional relationship of pedometer‐determined ambulatory activity to indicators of health. Obesity Research, 11(12), 1563-1570.
Chen, K. Y., & Bassett, D. R. (2005). The technology of accelerometry-based activity monitors: current and future. Medicine & Science in Sports & Exercise, 37(11), S490.
Chen, K. Y., Janz, K. F., Zhu, W., & Brychta, R. J. (2012). Re-defining the roles of sensors in objective physical activity monitoring. Medicine & Science in Sports & Exercise, 44(1 Suppl 1), S13.
Crouter, S. E., Churilla, J. R., & Bassett Jr, D. R. (2006). Estimating energy expenditure using accelerometers. European Journal of Applied Physiology,98(6), 601-612.
Cummins, C., Orr, R., O’Connor, H., & West, C. (2013). Global positioning systems (GPS) and microtechnology sensors in team sports: A systematic review. Sports Medicine, 43(10), 1025–1042.
D'silva, L. A., Cardew, A., Qasem, L., Wilson, R. P., & Lewis, M. J. (2015). Relationships between oxygen uptake, dynamic body acceleration and heart rate in humans. The Journal of Sports Medicine and Physical Fitness, 55(10), 1049-1057.
Freedson, P., Bowles, H. R., Troiano, R., & Haskell, W. (2012). Assessment of physical activity using wearable monitors: recommendations for monitor calibration and use in the field. Medicine & Science in Sports & Exercise,44(1 Suppl 1), S1.
Fudge, B. W., Wilson, J., Easton, C., Irwin, L., Clark, J., Haddow, O., ... & Pitsiladis, Y. P. (2007). Estimation of oxygen uptake during fast running using accelerometry and heart rate. Medicine & Science in Sports & Exercise,39(1), 192-198.
Gastin, P. B., McLean, O., Spittle, M., & Breed, R. V. P. (2013).Quantification of tackling demands in professional Australian football using integrated wearable athlete tracking technology. Journal of Science and Medicine in Sport, 16(3), 589–593.
Gleiss, A. C., Gruber, S. H., & Wilson, R. P. (2009). Multi-channel data-logging: towards determination of behavior and metabolic rate in free-swimming sharks. Tagging and Tracking of Marine Animals with Electronic Devices (pp. 211-228).
Gleiss, A. C., Wilson, R. P., & Shepard, E. L. (2011). Making overall dynamic body acceleration work: on the theory of acceleration as a proxy for energy expenditure. Methods in Ecology and Evolution, 2(1), 23-33.
Grant, P. M., Ryan, C. G., Tigbe, W. W., & Granat, M. H. (2006). The validation of a novel activity monitor in the measurement of posture and motion during everyday activities. British Journal of Sports Medicine, 40(12), 992-997.
Graser, S. V., Groves, A., Prusak, K. A., & Pennington, T. R. (2011). Pedometer steps-perminute, moderate intensity, and individual differences in 12-14-year-old youth. Journal of Physical Activity & Health, 8(2), 272-278.
Halsey, L. G., Shepard, E. L., Hulston, C. J., Venables, M. C., White, C. R., Jeukendrup, A. E., & Wilson, R. P. (2008). Acceleration versus heart rate for estimating energy expenditure and speed during locomotion in animals: tests with an easy model species, Homo sapiens. Zoology, 111(3), 231-241.
Halsey, L. G., Shepard, E. L. C., Quintana, F., Laich, A. G., Green, J. A., & Wilson, R. P. (2009). The relationship between oxygen consumption and body acceleration in a range of species. Comparative Biochemistry and Physiology-Part A: Molecular & Integrative Physiology, 152(2), 197-202.
Haymes, E. M., & Byrnes, W. C. (1993). Walking and running energy expenditure estimated by Caltrac and indirect calorimetry. Medicine & Science in Sports & Exercise, 25(12), 1365-1369.
Hiilloskorpi, H. K., Pasanen, M. E., Fogelholm, M. G., Laukkanen, R. M., & Mänttäri, A. T. (2003). Use of heart rate to predict energy expenditure from low to high activity levels. International Journal of Sports Medicine, 24(5), 332-336.
Jean-Louis, G., Kripke, D. F., Cole, R. J., Assmus, J. D., & Langer, R. D. (2001). Sleep detection with an accelerometer actigraph: comparisons with polysomnography. Physiology & Behavior, 72(1), 21-28.
Karvonen, J., & Vuorimaa, T. (1988). Heart Rate and Exercise Intensity During Sports Activities. Sports Medicine, 5(5), 303-311.
Kozey, S. L., Lyden, K., Howe, C. A., Staudenmayer, J. W., & Freedson, P. S. (2010). Accelerometer output and MET values of common physical activities. Medicine & Science in Sports & Exercise, 42(9), 1776.
Laporte, R. E., Montoye, H. J., & Caspersen, C. J. (1985). Assessment of physical activity in epidemiologic research: problems and prospects. Public Health Reports, 100(2), 131.
Livingstone, M. B., Prentice, A. M., Coward, W., Ceesay, S. M., Strain, J. J., McKenna, P. G., ... & Hickey, R. (1990). Simultaneous measurement of free-living energy expenditure by the doubly labeled water method and heart-rate monitoring. The American Journal of Clinical Nutrition, 52(1), 59-65.
Luke, A., Maki, K. C., Barkey, N. A. N. E. T. T. E., Cooper, R. I. C. H. A. R. D., & McGEE, D. A. N. I. E. L. (1997). Simultaneous monitoring of heart rate and motion to assess energy expenditure. Medicine & Science in Sports & Exercise, 29(1), 144-148
Marschollek, M. (2013). A semi-quantitative method to denote generic physical activity phenotypes from long-term accelerometer data –the ATLAS index. PLoS One (8), e63522.
McGregor, S. J., Busa, M. A., Yaggie, J. A., & Bollt, E. M. (2009). High resolution MEMS accelerometers to estimate VO2 and compare running mechanics between highly trained inter-collegiate and untrained runners. PLoS One, 4(10), e7355-e7355.
Meijer, G. A., Westerterp, K. R., Koper, H. A. N. S., & ten Hoor, F. O. P. P. E. (1989). Assessment of energy expenditure by recording heart rate and body acceleration. Medicine & Science in Sports & Exercise, 21(3), 343-347.
Montoye, H. J., Kemper, H. C., Saris, W. H., & Washburn, R. A. (1996). Measuring Physical Activity and Energy Expenditure. Champaign, IL: Human Kinetics, 17-25.
Nilsson, J., & Thorstensson, A. (1987). Adaptability in frequency and amplitude of leg movements during human locomotion at different speeds. Acta Physiologica Scandinavica, 129(1), 107-114.
Ortega, J. D., & Farley, C. T. (2005). Minimizing center of mass vertical movement increases metabolic cost in walking. Journal of Applied Physiology,99(6), 2099-2107.
Pearce, M. E., Cunningham, D. A., Donner, A. P., Rechnitzer, P. A., Fullerton, G. M., & Howard, J. H. (1983). Energy cost of treadmill and floor walking at self-selected paces. European Journal of Applied Physiology and Occupational Physiology, 52(1), 115-119.
Prilutsky, B. I. & Gregor, R. J. (2001). Swing and support related muscle actions differentially trigger human walk-run and run-walk transition. Journal of Experimental Biology. 204, 2277-2287.
Qasem, L., Cardew, A., Wilson, A., Griffiths, I., Halsey, L. G., Shepard, E. L., ... & Wilson, R. (2012). Tri-axial dynamic acceleration as a proxy for animal energy expenditure; should we be summing values or calculating the vector? PLoS One, 7(2), e31187.
Rose, J., Gamble, J. G., Lee, J., Lee, R., & Haskell, W. L. (1991). The energy expenditure index: a method to quantitate and compare walking energy expenditure for children and adolescents. Journal of Pediatric Orthopaedics, 11(5), 571-hyhen.
Rose, J., Gamble, J. G., Medeiros, J., Burgos, A., & Haskell, W. L. (1989). Energy cost of walking in normal children and in those with cerebral palsy: comparison of heart rate and oxygen uptake. Journal of Pediatric Orthopaedics, 9(3), 276-279.
Rothney, M. P., Schaefer, E. V., Neumann, M. M., Choi, L., & Chen, K. Y. (2008). Validity of physical activity intensity predictions by ActiGraph, Actical, and RT3 accelerometers. Obesity, 16(8), 1946-1952.
Rowlands, A. V., & Eston, R. G. (2005). Comparison of accelerometer and pedometer measures of physical activity in boys and girls, ages 8–10 years. Research Quarterly for Exercise and Sport, 76(3), 251-257.
Ryan, C. G., Grant, P. M., Tigbe, W. W., & Granat, M. H. (2006). The validity and reliability of a novel activity monitor as a measure of walking. British Journal of Sports Medicine, 40(9), 779-784.
Staudenmayer, J., Zhu, W., & Catellier, D. J. (2012). Statistical considerations in the analysis of accelerometry-based activity monitor data. Medicine & Science in Sports & Exercise, 44(1 Suppl 1), S61-7.
Strath, S. J., Bassett, D. R., Swartz, A. M., & Thompson, D. L. (2001). Simultaneous heart rate-motion sensor technique to estimate energy expenditure. Medicine & Science in Sports & Exercise, 33(12), 2118-2123.
Stallard, J., & Rose, G. K. (1980). Clinical decision making with the aid of ambulatory monitoring of heart rate. Prosthetics and Orthotics International,4(2), 91-96.
Stallard, J., Rose, G. K., Tait, J. H., & Davies, J. B. (1978). Assessment of orthoses by means of speed and heart rate. Journal of Medical Engineering & Technology, 2(1), 22-24.
Tanaka, H., Monahan, K. D., & Seals, D. R. (2001). Age-predicted maximal heart rate revisited. Journal of The American College of Cardiology, 37(1), 153-156.
Thorstensson, A. & Roberthson, H. (1987). Adaptations to changing speed in human locomotion: speed of transition between walking and running. Acta Physiologica Scandinavica. 131, 211-214.
United States. Department of Health & Human Services. (1996). Physical Activity and Health: A Report of the Surgeon General. DIANE Publishing.
Vähä-Ypyä, H., Vasankari, T., Husu, P., Mänttäri, A., Vuorimaa, T., Suni, J., & Sievänen, H. (2015). Validation of Cut-Points for Evaluating the Intensity of Physical Activity with accelerometry-Based Mean Amplitude Deviation (MAD). PLoS One, 10(8), e0134813.
Vähä‐Ypyä, H., Vasankari, T., Husu, P., Suni, J., & Sievänen, H. (2015). A universal, accurate intensity‐based classification of different physical activities using raw data of accelerometer. Clinical Physiology and Functional Imaging, 35(1), 64-70.
Waters, R. L., Lunsford, B. R., Perry, J., & Byrd, R. (1988). Energy‐speed relationship of walking: standard tables. Journal of Orthopaedic Research, 6(2), 215-222.
Ward, D. S., Evenson, K. R., Vaughn, A., Rodgers, A. B., & Troiano, R. P. (2005). Accelerometer use in physical activity: best practices and research recommendations. Medicine & Science in Sports & Exercise, 37(11 Suppl), S582-8.
Wikipedia. (2015). Quantified Self. Retrieved from Wikipedia Web site: https:// en.wikipedia.org/w/index.php?title=Quantified_Self&oldid=692666419
Wundersitz, D. W., Gastin, P. B., Richter, C., Robertson, S. J., & Netto, K. J. (2015). Validity of a trunk-mounted accelerometer to assess peak accelerations during walking, jogging and running. European Journal of Sport Science, 15(5), 382-390.
Wundersitz, D. W. T., Netto, K. J., Aisbett, B., & Gastin, P. B. (2013). Validity of an upper-body-mounted accelerometer to measure peak vertical and resultant force during running and change-of-direction tasks. Sports Biomechanics, 12(4), 403-412.
Zijlstra, W., & Hof, A. L. (2003). Assessment of spatio-temporal gait parameters from trunk accelerations during human walking. Gait & Posture,18(2), 1-10.

下載圖示
QR CODE