研究生: |
陳彥儒 Chen, Yen-Ju |
---|---|
論文名稱: |
對於已知排列多項式的推廣 Generalizations of Known Permutation Polynomials |
指導教授: |
夏良忠
Hsia, Liang-Chung |
口試委員: |
夏良忠
Hsia, Liang-Chung 李華介 Li, Hua-Chieh 王姿月 Wang, Tzu-Yueh |
口試日期: | 2025/01/21 |
學位類別: |
碩士 Master |
系所名稱: |
數學系 Department of Mathematics |
論文出版年: | 2025 |
畢業學年度: | 113 |
語文別: | 英文 |
論文頁數: | 49 |
英文關鍵詞: | Permutation polynomials, Finite field, AGW criterion |
DOI URL: | http://doi.org/10.6345/NTNU202500217 |
論文種類: | 學術論文 |
相關次數: | 點閱:7 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Permutation polynomials and their compositional inverses have wide applications in cryptography and coding theory. In this thesis, we present generalizations of two distinct known types of permutation polynomials and their compositional inverses, base on the AGW criterion.
[1] Lidl, R., Niederreiter, H. (1997). Finite Fields, Encyclopedia Math. Appl., Cambridge University Press.
[2] Akbary, A., Ghioca D., & Wang Q. (2001). On constructing permutations of finite fields, Finite Fields and Their Applications, 17, 51-67.
[3] Yuan, P. (2024). Local Method for Compositional Inverses of Permutation Polynomials, Communications in Algebra, 52, 3070-3080.